【RocketMq系列-02】RocketMq的架构解析和高性能设计

这篇具有很好参考价值的文章主要介绍了【RocketMq系列-02】RocketMq的架构解析和高性能设计。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

RocketMq系列整体栏目


内容 链接地址
【一】RocketMq安装和基本概念 https://zhenghuisheng.blog.csdn.net/article/details/134486709
【二】RocketMq的架构解析和高性能设计/font> https://zhenghuisheng.blog.csdn.net/article/details/134559514

一,RocketMq的架构解析和高性能设计

在rocketMq中,其整体架构如下,在RocketMqServer中,主要有NameServer,Broker,MessageQueue,Message等组件,并且存在Topic这种逻辑组件,表示一种主题

【RocketMq系列-02】RocketMq的架构解析和高性能设计,rocketmq,架构,rocketmq设计原理,java-rocketmq,消息队列

NameServer是topic的注册中心,NameServer会和topic建立长连接,将broker的信息通过topic注册到NameServer中,然后生产者和消费者都会先通过这个NameServer获取相关信息,再和对应的broker建立长连接。

在微服务中,有Nacos,zookeeper等作为注册中心:

但是zk很明显不适合作为这种高可用的注册的这中心,因为内部可能会因为选举出现脑裂问题,并且因为这个问题可能会导致整个服务出现一定时间的不可用的问题,而rocketmq主要就是高吞吐量,低延迟的特性,因此不可能去选择zk作为注册中心的;

而nacos和eureka也不适合作为rocketmq的注册中心,如nacos中会记录很多信息,如心跳信息,端口,host等信息,而Nameserver中只需要记录这个Broker的信息,如果使用nacos来做的话,有点大材小用了。并且如果引用nacos,还要考虑版本冲突这些,做一些适配器等,相对来说是更加复杂的

在topic中的Consumer配置中,每个topic都会对应一个或者多个消费者组,topic主题和消费者组是多对多的关系,一个consumer消费者组,代表的是一组逻辑相同的消费者,一个message消息,只能被消费者组中的一个消费者消费,这个和kafka中的消息消费是一样的

上面提到了消费者组的概念,在生产者中,也有生产者组。在事务机制中,当生产者给broker发送数据之后,broker需要给生产者一个数据回调,那么就需要指定生产者名字,那么此时生产者组就能发挥其作用

生产者producer在本地会有一个缓存存储Nameserver中存储的broker,在往broker投递之前,会向注册中心中发起一个请求判断是否需要拉取最新的配置,然后再往对应的broker发送数据

2,rocketmq底层原理

2.1,事务的底层实现

rocketmq的事务实现,相当于一个简单的分布式事务,主要是保证生产者本地事务和发送到broker事务的原子性。而broker到consumer端是一定可以保证消息消费成功的,如果一个消费者失败,那么可以往别的消费者里面推送,如果最终依旧失败,那么可以先重试,最后加入到死信队列里面

事务消息的底层实现如下图,首先生产者会发送一个half消息给Broker,Broker在接收到这个half消息之后,就会向broker返回一个确认的标志,然后事务的发送者就会执行本地事务,通过这个execute去执行本地事务。如果本地事务执行成功,那么生产者会返回一个提在交的状态给Broker,随后Broker将消息投递到消费者中;如果是回滚状态,那么消息会直接丢掉;如果是在4的时候,本地事务需要的时间过长,那么本地会先返回一个unknow的未知状态,然后broker会等一段时间,随后再回生产者中定时回查,消息生产者会去检查事务,默认是回查15次,如果是15次之后检查还是没有完成,那么消息就会直接丢弃掉

half消息有点类似于建立tcp连接,主要是做为一种嗅探机制,判断当前broker服务是否正常,如果broker服务挂了,那么连本地事务,也可以直接不执行了。

【RocketMq系列-02】RocketMq的架构解析和高性能设计,rocketmq,架构,rocketmq设计原理,java-rocketmq,消息队列

如一个订单场景,30s检查一次是否支付,那么就可以直接通过这种事务去实现,通过execute方法去执行本地事务,然后通过这个check的方式去银行进行对账。如果最终超时,那么最终将消息放入到死信队列中,在私信队列中写对应的逻辑,如将库存加回等。

2.2,如何保证消息不丢失

在mq中,消息丢失主要有四个地方,分别是生产者到broker、broker到消费者,broker的master到slave以及操作系统自身的缓存。

  • 生产者到broker的解决方案可以如下:可以选择最简单的同步+多次试错的方式,或者可以直接选择事务消息
  • broker到消费者之间:消费者本身具有重试功能,消费者不应答就会往别的消费者投递
  • 操作系统主要是因为数据在缓存,如果出现断电而未来得及刷盘导致,因此应该采用同步刷盘解决
  • broker到的master到slave之间:也可以采用同步的方式,来一条消息就往slave写入,或者通过Dledger集群

操作系统和主从之间保证消息不丢失,主要是通过同步的方式解决,但是在保证安全的情况下,会在一定的程度上影响吞吐量和性能

2.3,rocketmq积压问题

在rocketmq中,其处理数据积压问题时比其他mq的能力强的,如果出现积压,那么可以直接通过控制台上面的topic,通过内部的代理者位点和消费者位点所产生的差值查看,如果差值为0,则表示有消息积压未处理。

【RocketMq系列-02】RocketMq的架构解析和高性能设计,rocketmq,架构,rocketmq设计原理,java-rocketmq,消息队列

在rocketmq内部,一个MessageQueue队列的消息只能由一个消费者组中的一个消费者去消费,其底层实现和kafka是一样的,因此如果出现消息积压,那么首先可以查看消费者组中的消费者个数和队列的个数是否相同,如果消费者个数小于队列的个数,那么可以增加消费者个数,直到和队列的个数一致,如默认队列的个数为4,那么将消费者组中的消费者个数设置成4

当然,消费者个数调大是没有用的,因为最大只能和topic中的队列一致,那么就可以通过重写一个topic,调大topic中队列的数量,如原来的队列个数只有4,那么可以创建一个新的topic,设置队列的个数为8,并且原来的消费者对消息不消费,而是做一个转发功能,将4个队列的topic的数据转发到8个队列的topic中,那么在消费者组中,其个数就可以设置成8,那么这样子就很好的处理消息积压的问题了。

数据的搬运可以在具体的消费者代码里面去编写,主要功能有接收四个topic队列的数据,然后转发到八个topic的队列中,最后再写一个消费者去消费八个队列topic的消息

2.4,如何保证顺序消费

这里的顺序消息只能保证局部有序,而不是全局有序。在rocketmq内部,在生产者端,消息会根据id做一个取模运算,会将同一个区取模运算的值放入一个队列里面,在消费者端,会锁定队列消费,就是会先消费完一个队列再消费下一个队列,从而保证单个队列消费的有序性

2.5,rocketmq的持久化

rocketmq为了保证消息的安全性,在broker内部都会做一个持久化的操作,首先当生产者将消息发送到broker之后,会现将消息存储到 coimmit 文件中,每个topic都会有对应的commit文件,每个文件大小为1g,如果消息满了则会创建新的文件,文件的格式为二进制格式。

在消费者中,会有一个 comsumeQueue 文件,改文件不存数据,只存索引信息,如存一些偏移量等,在消费时可以更快的定位到commit文件中的数据,随后去消费里面的数据,并且可以通过Tag标签去过滤消息

【RocketMq系列-02】RocketMq的架构解析和高性能设计,rocketmq,架构,rocketmq设计原理,java-rocketmq,消息队列

除了上面两个文件之外,还有维护一个index文件,内部会记录Commit日志的偏移量等

2.6,死信队列

当broker和consumer之间重试16次之后,消息依旧没能被消费,那么消息就会加入到死信队列中。一个私信队列会对应一个消费者组,其perm对应的权限值为2。死信队列的消息默认不会被消费,而是需要开发者自身去处理该队列中的数据。

并且私信队列中消息的有效期也是三天,可以在broker.conf配置文件设置,当超过这个时间,消息都会被删除。

2.7,消息的幂等性

在rocketmq中,消息的幂等性为 at least once 至少被消费一次。官方建议使用里面的key去做幂等性,key是一个唯一值,就是一个唯一id。除了这些方式之外,在分布式场景下,也可以开率分布式锁这些做幂等。

3,rocketmq高性能的设计

3.1,零拷贝技术

零拷贝是操作系统层面的一种加速文件读写的操作机制,可以通过这种零拷贝的形式提升IO操作的性能。在java中,主要是通过这种 fileChannel 的方式实现零拷贝,其具体实现由 mmap和sendFile 两种形式

以一个文件的拷贝为例,正常来说,需要从用户态切换到内核态,然后再去执行io操作,并且需要通过cpu的调度,从磁盘中将文件加载到内存,再加载到网卡。而在引入零拷贝技术之后,可以让channel代替cpu去做io操作,cpu只需要给channel对应的权限即可。在操作系统层面,就是利用这种DMA技术,将原来四次的cpu拷贝,变成了两次,从而提高整体性能。

3.2,顺序写技术

本人在写过一个顺序io和随机io的文章:https://zhenghuisheng.blog.csdn.net/article/details/129080088 ,顺序写可以减少磁头的移动去寻址,不管是插入数据还是查询数据,都可以提升其性能,并且可以减少磁盘的碎片。

3.3,刷盘机制

rocketmq为了保证数据的安全性,在broker中会持久化到commitlog中,在刷盘时有两种方式,分别是:同步刷盘和异步刷盘 ,默认采用的刷盘机制时异步刷盘文章来源地址https://www.toymoban.com/news/detail-752031.html

flushDiskType=ASYNC_FLUSH

到了这里,关于【RocketMq系列-02】RocketMq的架构解析和高性能设计的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SambaNova 芯片:深入解析其架构和高性能秘诀

    原创 AI苏妲己  SambaNova——一家总部位于帕洛阿尔托的公司已经筹集了超过10亿美元的风险投资,不会直接向公司出售芯片。相反,它出售其定制技术堆栈的访问权限,该堆栈具有专门为运行最大的人工智能模型而设计的专有硬件和软件。 最近,SambaNova宣布推出了其新型SN

    2024年04月10日
    浏览(51)
  • 【架构】后端服务架构高性能设计方法

    “N 高 N 可”,高性能、高并发、高可用、高可靠、可扩展、可维护、可用性等是后台开发耳熟能详的词了,它们中有些词在大部分情况下表达相近意思。本序列文章旨在探讨和总结后台架构设计中常用的技术和方法,并归纳成一套方法论。 本文主要探讨和总结服务架构设计

    2024年02月11日
    浏览(56)
  • 架构师的36项修炼-06高性能系统架构设计

    本课时讲解大家常听到的高性能系统架构。 高性能系统架构,主要包括两部分内容,性能测试与性能优化。性能优化又可以细分为硬件优化、中间件优化、架构优化及代码优化,知识架构图如下。 性能测试 先看系统的性能测试。性能测试是性能优化的前提和基础,也是性能

    2024年01月25日
    浏览(51)
  • Simple RPC - 02 通用高性能序列化和反序列化设计与实现

    网络传输和序列化这两部分的功能相对来说是非常通用并且独立的,在设计的时候,只要能做到比较好的抽象,这两部的实现,它的通用性是非常强的。不仅可以用于 RPC 框架中,同样可以直接拿去用于实现消息队列,或者其他需要互相通信的分布式系统中。 我们先来实现序

    2024年02月08日
    浏览(38)
  • 《Linux高性能服务器编程》笔记02

    参考 Linux高性能服务器编程源码: https://github.com/raichen/LinuxServerCodes 豆瓣: Linux高性能服务器编程 Linux提供了很多高级的I/O函数。它们并不像Linux基础I/O函数(比如open和read) 那么常用(编写内核模块时一般要实现这些I/O函数),但在特定的条件下却表现出优秀的性 能。本章将讨论

    2024年01月21日
    浏览(57)
  • RocketMQ on openEuler 提供高性能消息队列的稳定性解决方案

    RocketMQ on openEuler,是一种将 RocketMQ 消息中间件通过容器化的方式部署在 openEuler 操作系统上运行,借助 openEuler 系统对于 OS 缓存回收效率增强的内核特性,提升消息中间件在面向超大规模高并发、高吞吐量、低延迟场景下稳定性和可靠性的软件解决方案。 移动云 RocketMQ 消息

    2024年02月11日
    浏览(54)
  • 架构篇17:高性能缓存架构

    虽然我们可以通过各种手段来提升存储系统的性能,但在某些复杂的业务场景下,单纯依靠存储系统的性能提升不够的,典型的场景有: 需要经过复杂运算后得出的数据,存储系统无能为力 例如,一个论坛需要在首页展示当前有多少用户同时在线,如果使用 MySQL 来存储当前

    2024年01月24日
    浏览(47)
  • 架构篇20:高性能负载均衡-分类及架构

    单服务器无论如何优化,无论采用多好的硬件,总会有一个性能天花板,当单服务器的性能无法满足业务需求时,就需要设计高性能集群来提升系统整体的处理性能。 高性能集群的本质很简单,通过增加更多的服务器来提升系统整体的计算能力。由于计算本身存在一个特点:

    2024年01月25日
    浏览(48)
  • 从零开始学架构-计算高性能

            高性能是每个程序员的追求,无论做一个系统、还是写一组代码,都希望能够达到高性能的效果。而高性能又是最复杂的一环,磁盘、操作系统、CPU、内存、缓存、网络、编程语言、数据库、架构等,每个都可能影响系统的高性能,一行不恰当的 debug 日志,一个

    2023年04月24日
    浏览(93)
  • 架构篇21:高性能负载均衡-算法

    负载均衡算法数量较多,而且可以根据一些业务特性进行定制开发,抛开细节上的差异,根据算法期望达到的目的,大体上可以分为下面几类。 任务平分类:负载均衡系统将收到的任务平均分配给服务器进行处理,这里的“平均”可以是绝对数量的平均,也可以是比例或者权

    2024年01月25日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包