【】【一类问题的通法】【真题+李6卷6+李4卷4(+李6卷5)分析】合同矩阵A B有PTAP=B,求可逆阵P的策略

这篇具有很好参考价值的文章主要介绍了【】【一类问题的通法】【真题+李6卷6+李4卷4(+李6卷5)分析】合同矩阵A B有PTAP=B,求可逆阵P的策略。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【铺垫】二次型做的变换与相应二次型矩阵的对应:二次型f(x1,x2,x3)=xTAx,g(y1,y2,y3)=yTBy
①若f在可逆变换x=Py下化为g,即P为可逆阵,有PTAP=B;此时P来源于二次型f g代数配方的系数阵。A B合同
②若f在正交变换x=Qy下化为g,即Q为正交阵,有QTAP=Q^(-1)AQ=B;此时Q来源于矩阵方法求A,B的特征值特征向量,产生的过渡正交阵Q,使得QTAQ=B。A B合同且相似
·故若让求合同矩阵A B的可逆过渡阵P,使PTAP=B,P的构成来源可以是:A B对应二次型代数配方的可逆系数阵(此时二次型做可逆变换),或者A B化为对角阵的正交阵(此时二次型做正交变换)
【思考】若实对称阵A B合同但不相似,且有可逆阵Q使得QTAQ=B,那么Q可能为正交阵吗?
【回答】Q不可能为正交阵。因为若Q为正交阵,则Q(-1)=QT,则有Q(-1)AQ=B,此时A B相似,与条件矛盾
【原创】【一类问题的通法】【真题+李6卷6+李4卷4(+李6卷5)分析】合同矩阵A B有PTAP=B,求可逆阵P的策略,矩阵,算法,线性代数,数学建模

【问题引入】若实对称阵A B合同,考虑A B均非对角阵的一般情况,则有可逆阵P,使得PTAP=B,求P的策略(不考虑成对初等变换)
【分析】合同矩阵A B有相同的规范型,总存在对角阵∧和可逆阵C D,使得CTAC=∧=DTBD
若A B合同但不相似,C D中最多有1个正交阵〔不可能 C D 均为正交阵〕【但若A B不仅合同且相似,则C D可能均为正交阵,一般可逆阵也可。例如C D均为正交阵,24李6卷5线代大题:二次型f(xi)在正交变换x=Qy变换下化为二次型g(yi),让求Q;记f g对应二次型矩阵为A B,则有正交阵Q使得QTAQ=B,A B相似。将A B分别用一个正交阵Q1 Q2对角化(此不用配方),根据Q1 Q2即可得Q。下面说A B合同但不相似的情况】
【核心思想】①写A B对应的二次型f(xi),g(yi)
②选用代数配方法或正交矩阵法,将A B在可逆阵C D的作用下化为同一个对角阵∧,即CTAC=∧=DTBD(C D中可能存在最多一个正交阵)。后可根据C D求出PTAP=B的可逆阵P
·其实基本默认可优先考虑配方法,若给过铺垫可考虑一下正交阵。注意若A B合同但不相似,最终PTAP=B的P不可能为正交阵(见上提问),正交阵只可能与另一个可逆阵相乘构成P

【情况一】C D中无正交阵〔20数二大题+24李6数二第6套大题〕
【实操】①A用相应二次型f(xi)配方(即可逆变换x=Cz)到对角阵∧〔C为配方系数阵的逆〕
②B用相应二次型g(yi)配方(即可逆变换y=Dz)到同一个∧〔D为配方系数阵的逆〕
【注】(1)化为的同一个∧通常为f g共同的规范型
(2)20数二线代大题要自己将f g同时配方为同一规范型;24李4数二线代第一问已让求出了f到规范型的可逆变换x=Cy〔即已找到C使CTAC=∧=E〕。而A B都是正定阵,规范型均为E;第2问再求出g到规范型的可逆变换y=Dz〔即再求出D使DTBD=∧=E〕;结合C D即可求出PTAP=B的P

【情况二】若C D中有正交阵,设C为正交阵,D为可逆阵〔24李4数二第4套大题考法〕
【实操】①将A用正交阵C化到标准型∧,即CTAC=∧〔相应二次型f(xi)做正交变换x=Cz〕
②B用相应二次型g(yi)配方(即可逆变换y=Dz)到同一个∧〔D为配方系数阵的逆〕
【注】(1)f g化为的同一个∧通常为正交阵C的标准型
(2)24李4数二第4套线代大题套路,就是第一问让用正交变化x=Qy求出了f的标准型〔即求出了正交阵Q使QTAQ=∧1=diag(a+1,a+1,a-2),∧1则为A的标准型〕;第二问记B=(A-aE)²,注意到一问的Q也可使QTBQ=∧2=diag(1,1,4),此时再将B做可逆变换y=Dz配方到∧3=E〔即易写出可逆阵D,使DT∧2D=∧3=E(因为∧2原本就是对角阵了)〕。故有DTQTBQD(=∧3)=E,而让求PTBP=E,可取P=QD。本题虽形式上设问略有不同,但手法思想类似
(3)【注意】C D中有无正交阵其实可以“自定义”,如当下面情况可出现正交阵
①第一问让求过正交阵C,使CTAC=∧〔24李4数二第4套考法〕;则此时只需对B相应二次型g(yi)配方即可
②配方难配或矩阵AorB的特征值易求文章来源地址https://www.toymoban.com/news/detail-752703.html

到了这里,关于【】【一类问题的通法】【真题+李6卷6+李4卷4(+李6卷5)分析】合同矩阵A B有PTAP=B,求可逆阵P的策略的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【华为OD机试真题 Java语言】305、最大矩阵和、最大子矩阵 | 机试真题+思路参考+代码分析

    🍂个人博客首页: KJ.JK   🍂专栏介绍: 华为OD机试真题汇总,定期更新华为OD各个时间阶段的机试真题,每日定时更新,本专栏将使用Java语言进行更新解答,包含真题,思路分析,代码参考,欢迎大家订阅学习 🎃题目描述 给定一个二维整数矩阵,要在这个矩阵中选出一个

    2024年02月07日
    浏览(71)
  • 【华为OD机试真题 JS语言】305、最大矩阵和、最大子矩阵 | 机试真题+思路参考+代码分析

    🍂个人博客首页: KJ.JK   🍂专栏介绍: 华为OD机试真题汇总,定期更新华为OD各个时间阶段的机试真题,每日定时更新,本专栏将使用JS语言进行更新解答,包含真题,思路分析,代码参考,欢迎大家订阅学习 🎃题目描述 给定一个二维整数矩阵,要在这个矩阵中选出一个子

    2024年02月08日
    浏览(40)
  • 【华为OD机试真题 C++语言】305、最大矩阵和、最大子矩阵 | 机试真题+思路参考+代码分析

    🍂个人博客首页: KJ.JK   🍂专栏介绍: 华为OD机试真题汇总,定期更新华为OD各个时间阶段的机试真题,每日定时更新,本专栏将使用C++语言进行更新解答,包含真题,思路分析,代码参考,欢迎大家订阅学习 🎃题目描述 给定一个二维整数矩阵,要在这个矩阵中选出一个

    2024年02月07日
    浏览(46)
  • 矩阵操作万能函数 einsum 详细解析(通法教你如何看懂并写出einsum表达式)

    可能你在某个地方听说了einsum,然后不会写,或者看不懂。这篇文章将会一步一步教会你如何使用(通法哦,只要学会方法就全会了)。 ein 就是爱因斯坦的ein,sum就是求和。einsum就是爱因斯坦求和约定,其实作用就是把求和符号省略,就这么简单。举个例子: 我们现在有一

    2023年04月08日
    浏览(45)
  • 线性映射矩阵的可逆性: 判断与解释

    线性映射矩阵的可逆性是线性代数中的一个重要概念,它有着广泛的应用在数学、科学、工程等领域。在这篇文章中,我们将深入探讨线性映射矩阵的可逆性,包括判断可逆性、解释可逆性以及相关算法和代码实例。 2.1 线性映射 线性映射是将一个向量空间映射到另一个向量

    2024年02月21日
    浏览(78)
  • 第七章,相似矩阵及其应用,3-二次型、合同矩阵与合同变换

    玩转线性代数(38)二次型概念、合同矩阵与合同变换的笔记,相关证明以及例子见原文 含有n个变量 x 1 , x 2 , . . . x n x_1,x_2,...x_n x 1 ​ , x 2 ​ , ... x n ​ 的二次齐次函数: f ( x 1 , x 2 , . . . x n ) = a 11 x 1 2 + a 22 x 2 2 + . . . + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + . . . + 2 a n − 1 , n x

    2024年02月11日
    浏览(55)
  • 【华为OD机试真题 Golang语言】68、矩阵扩散 | 机试真题+思路参考+代码分析

    🍂个人博客首页: KJ.JK   🍂专栏介绍: 华为OD机试真题汇总,定期更新华为OD各个时间阶段的机试真题,每日定时更新,本专栏将使用Golang语言进行更新解答,包含真题,思路分析,代码参考,欢迎大家订阅学习 🎃题目描述 存在一个m*n的二维数组,其成员取值范围为0或

    2024年02月03日
    浏览(54)
  • 矩阵的合同的理解

    矩阵的合同(matrix congruence)是一个线性代数概念,描述了两个矩阵在相似性和性质上的关系。两个矩阵 A A A 和 B B B 被称为合同的,如果存在一个非奇异矩阵 P P P ,使得 B = P T A P B = P^TAP B = P T A P ,其中 P T P^T P T 表示 P P P 的转置。这意味着两个矩阵 A A A 和 B B B 具有相似的

    2024年02月02日
    浏览(71)
  • 合同矩阵判断方法及性质

    判断合同矩阵的充要条件 两个实对称矩阵合同的充要条件是 它们的正负惯性指数相同。 正惯性指数是线性代数里矩阵的正的特征值个数,负惯性指数是线性代数里矩阵的负的特征值个数。    如图所示,上述矩阵,正惯性指数为1,负惯性指数为1,矩阵的秩为2。 正负惯性指

    2024年02月11日
    浏览(53)
  • 合同矩阵充要条件

    两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。 正惯性指数是矩阵正特征值个数,负惯性指数是矩阵负特征值个数。 即合同矩阵的充分必要条件是特征值的正负号个数相同。 证明: 本论证中的所有矩阵先假设为对称矩阵,但不限于对称矩阵。 根据定义,若矩

    2024年02月06日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包