Python大数据之pandas快速入门(二)

这篇具有很好参考价值的文章主要介绍了Python大数据之pandas快速入门(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

3. DataFrame 的行列标签和行列位置编号

3.1 DataFrame 的行标签和列标签

1)如果所示,分别是 DataFrame 的行标签和列标签

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

2)获取 DataFrame 的行标签

# 获取 DataFrame 的行标签
china.index

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

3)获取 DataFrame 的列标签

# 获取 DataFrame 的列标签
china.columns

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

4)设置 DataFrame 的行标签

# 注意:DataFrame设置行标签时,并不会改变原来的DataFrame,而是返回的副本
china_df = china.set_index('year')

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

3.2 DataFrame 的行位置编号和列位置编号

DataFrame 除了行标签和列标签之外,还具有行列位置编号。

行位置编号:从上到下,第1行编号为0,第二行编号为1,…,第n行编号为n-1

列位置编号:从左到右,第1列编号为0,第二列编号为1,…,第n列编号为n-1

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

注意:默认情况下,行标签和行位置编号是一样的。

4. DataFrame 获取指定行列的数据

以下示例都使用加载的 gapminder.tsv 数据集进行操作,注意将 year 这一列设置为行标签。

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

4.1 loc函数获取指定行列的数据

基本格式

语法 说明
df.loc[[行标签1, ...], [列标签1, ...]] 根据行标签和列标签获取对应行的对应 列的数据,结果为:DataFrame
df.loc[[行标签1, ...]] 根据行标签获取对应行的所有列的数据 结果为:DataFrame
df.loc[:, [列标签1, ...]] 根据列标签获取所有行的对应列的数据 结果为:DataFrame
df.loc[行标签] 1)如果结果只有一行,结果为:Series 2)如果结果有多行,结果为:DataFrame
df.loc[[行标签]] 无论结果是一行还是多行,结果为DataFrame
df.loc[[行标签], 列标签] 1)如果结果只有一列,结果为:Series, 行标签作为 Series 的索引标签 2)如果结果有多列,结果为:DataFrame
df.loc[行标签, [列标签]] 1)如果结果只有一行,结果为:Series, 列标签作为 Series 的索引标签 2)如果结果有多行,结果为DataFrame
df.loc[行标签, 列标签] 1)如果结果只有一行一列,结果为单个值 2)如果结果有多行一列,结果为:Series, 行标签作为 Series 的索引标签 3)如果结果有一行多列,结果为:Series, 列标签作为 Series 的索引标签 4)如果结果有多行多列,结果为:DataFrame

演示示例

示例1:获取行标签为 1952, 1962, 1972 行的 country、pop、gdpPercap 列的数据
示例2:获取行标签为 1952, 1962, 1972 行的所有列的数据
示例3:获取所有行的 country、pop、gdpPercap 列的数据
示例4:获取行标签为 1957 行的所有列的数据
示例5:获取行标签为 1957 行的 lifeExp 列的数据

示例实现

1)示例1:获取行标签为 1952, 1962, 1972 行的 country、pop、gdpPercap 列的数据

# 示例1:获取行标签为 1952, 1962, 1972 行的 country、pop、gdpPercap 列的数据
china_df.loc[[1952, 1962, 1972], ['country', 'pop', 'gdpPercap']]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

2)示例2:获取行标签为 1952, 1962, 1972 行的所有列的数据

# 示例2:获取行标签为 1952, 1962, 1972 行的所有列的数据
china_df.loc[[1952, 1962, 1972]]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

3)示例3:获取所有行的 country、pop、gdpPercap 列的数据

# 示例3:获取所有行的 country、pop、gdpPercap 列的数据
china_df.loc[:, ['country', 'pop', 'gdpPercap']]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

4)示例4:获取行标签为 1957 行的所有列的数据

# 示例4:获取行标签为 1957 行的所有列的数据
china_df.loc[1957]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

# 示例4:获取行标签为 1957 行的所有列的数据
china_df.loc[[1957]]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

5)示例5:获取行标签为 1957 行的 lifeExp 列的数据

# 示例5:获取行标签为 1957 行的 lifeExp 列的数据
china_df.loc[[1957], 'lifeExp']
或
china_df.loc[1957, ['lifeExp']]
或
china_df.loc[1957, 'lifeExp']

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

4.2 iloc函数获取指定行列的数据

基本格式

语法 说明
df.iloc[[行位置1, ...], [列位置1, ...]] 根据行位置和列位置获取对应行的对应 列的数据,结果为:DataFrame
df.iloc[[行位置1, ...]] 根据行位置获取对应行的所有列的数据 结果为:DataFrame
df.iloc[:, [列位置1, ...]] 根据列位置获取所有行的对应列的数据 结果为:DataFrame
df.iloc[行位置] 结果只有一行,结果为:Series
df.iloc[[行位置]] 结果只有一行,结果为:DataFrame
df.iloc[[行位置], 列位置] 结果只有一行一列,结果为:Series, 行标签作为 Series 的索引标签
df.iloc[行位置, [行位置]] 结果只有一行一列,结果为:Series, 列标签作为 Series 的索引标签
df.iloc[行位置, 行位置] 结果只有一行一列,结果为单个值

演示示例

示例1:获取行位置为 0, 2, 4 行的 0、1、2 列的数据
示例2:获取行位置为 0, 2, 4 行的所有列的数据
示例3:获取所有行的列位置为 0、1、2 列的数据
示例4:获取行位置为 1 行的所有列的数据
示例5:获取行位置为 1 行的列位置为 2 列的数据

示例实现

1)示例1:获取行位置为 0, 2, 4 行的 0、1、2 列的数据

# 示例1:获取行位置为 0, 2, 4 行的 0、1、2 列的数据
china_df.iloc[[0, 2, 4], [0, 1, 2]]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

2)示例2:获取行位置为 0, 2, 4 行的所有列的数据

# 示例2:获取行位置为 0, 2, 4 行的所有列的数据
china_df.iloc[[0, 2, 4]]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

3)示例3:获取所有行的列位置为 0、1、2 列的数据

# 示例3:获取所有行的列位置为 0、1、2 列的数据
china_df.iloc[:, [0, 1, 2]]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

4)示例4:获取行位置为 1 行的所有列的数据

# 示例4:获取行位置为 1 行的所有列的数据
china_df.iloc[1]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

# 示例4:获取行位置为 1 行的所有列的数据
china_df.iloc[[1]]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

5)示例5:获取行位置为 1 行的列位置为 2 列的数据

# 示例5:获取行位置为 1 行的列位置为 2 列的数据
china_df.iloc[[1], 2]
或
china_df.iloc[1, [2]]
或
china_df.iloc[1, 2]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

4.3 loc和iloc的切片操作

基本格式

语法 说明
df.loc[起始行标签:结束行标签, 起始列标签:结束列标签] 根据行列标签范围获对应行的对应列的数据,包含起始行列标签和结束行列标签
df.iloc[起始行位置:结束行位置, 起始列位置:结束列位置] 根据行列标签位置获对应行的对应列的数据,包含起始行列位置,但不包含结束行列位置

演示示例

示例1:获取 china_df 中前三行的前三列的数据,分别使用上面介绍的loc和iloc实现

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

示例实现

1)示例1:获取 china_df 中前三行的前三列的数据,分别使用上面介绍的loc和iloc实现

# 示例1:获取 china_df 中前三行的前三列的数据,分别使用上面介绍的loc和iloc实现
china_df.loc[1952:1962, 'country':'lifeExp']
或
china_df.iloc[0:3, 0:3]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

4.4 [] 语法获取指定行列的数据

基本格式

语法 说明
df[['列标签1', '列标签2', ...]] 根据列标签获取所有行的对应列的数据,结果为:DataFrame
df['列标签'] 根据列标签获取所有行的对应列的数据 1)如果结果只有一列,结果为:Series, 行标签作为 Series 的索引标签 2)如果结果有多列,结果为:DataFrame
df[['列标签']] 根据列标签获取所有行的对应列的数据,结果为:DataFrame
df[起始行位置:结束行位置] 根据指定范围获取对应行的所有列的数据,不包括结束行位置

演示示例

示例1:获取所有行的 country、pop、gdpPercap 列的数据
示例2:获取所有行的 pop 列的数据
示例3:获取前三行的数据
示例4:从第一行开始,每隔一行获取一行数据,一共获取3行

示例实现

1)示例1:获取所有行的 country、pop、gdpPercap 列的数据

# 示例1:获取所有行的 country、pop、gdpPercap 列的数据
china_df[['country', 'pop', 'gdpPercap']]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

2)示例2:获取所有行的 pop 列的数据

# 示例2:获取所有行的 pop 列的数据
china_df['pop']

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

# 示例2:获取所有行的 pop 列的数据
china_df[['pop']]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

3)示例3:获取前三行的数据

# 示例3:获取前三行的数据
china_df[0:3]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas

4)示例4:从第一行开始,每隔一行获取一行数据,一共获取3行

# 示例4:从第一行开始,每隔一行获取一行数据,一共获取3行
china_df[0:6:2]

Python大数据之pandas快速入门(二),# Pandas,python大数据,python,大数据,pandas文章来源地址https://www.toymoban.com/news/detail-752723.html

总结

  • 能够知道 DataFrame 和 Series 数据结构
  • 能够加载 csv 和 tsv 数据集
  • 能够区分 DataFrame 的行列标签和行列位置编号
  • 能够获取 DataFrame 指定行列的数据
    • loc
    • iloc
    • loc和iloc的切片操作
    • []

到了这里,关于Python大数据之pandas快速入门(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Python 零基础入门】Pandas

    Pandas 是一个开源的 Python 数据分析库, 由 Wes McKinney 在 2008 年创建, 而且在接下来的几年中, 它迅速成为 Python 数据分析社区中最受欢迎和最有影响力的工具之一. Pandas 的名字来源于 Panel Data 和 Python Data Analysis. Pandas 是一个开源的 Python 数据分析库, 它提供了大量功能, 能够帮助我

    2024年02月05日
    浏览(39)
  • 【python教程入门学习】Pandas库下载、安装和更新

    Windows系统 win+R 打开命令提示符,进入cmd命令提示符 pip install pandas 提示pip需要更新 按照提示输入以下代码 pip install --upgrade pip  检查是否安装完成 python -m pip list   进入python,输入import pandas,看是否报错,如果不报错,说明安装成功。 python import pandas  安装成功!!

    2024年02月14日
    浏览(44)
  • 【头歌】——数据分析与实践-python-Pandas 初体验-Pandas数据取值与选择-Pandas进阶

    第1关 了解数据处理对象–Series 第2关 了解数据处理对象-DataFrame 第3关 读取 CSV 格式数据 第4关 数据的基本操作——排序 第5关 数据的基本操作——删除 第6关 数据的基本操作——算术运算 第7关 数据的基本操作——去重 第8关 数据重塑 第1关 Series数据选择 第2关 DataFrame数据

    2024年01月22日
    浏览(152)
  • python-数据分析-pandas

    第一种:通过标量创建Series 第二种:通过列表创建Series 第三种:通过字典创建Series 第四种:通过ndarray创建Series values和index 索引和切片 第一种:通过一维列表构成的字典创建DataFrame 姓名 数学 语文 计算机 0 张三 87 54 34 1 李四 45 76 56 2 王五 34 55 77 3 赵六 98 90 87 姓名 数学 语文

    2023年04月23日
    浏览(63)
  • Python数据分析-Pandas

    个人笔迹,建议不看 Series类型 DataFrame类型 是一个二维结构,类似于一张excel表 DateFrame只要求每列的数据类型相同就可以了 查看数据 读取数据及数据操作 行操作 条件选择 缺失值及异常值处理 判断缺失值: 填充缺失值: 删除缺失值 age count 2.000000 mean 1.500000 std 0.707107 min 1

    2024年02月10日
    浏览(61)
  • 《Python数据分析技术栈》第06章使用 Pandas 准备数据 01 Pandas概览(Pandas at a glance)

    《Python数据分析技术栈》第06章使用 Pandas 准备数据 01 Pandas概览(Pandas at a glance) Wes McKinney developed the Pandas library in 2008. The name (Pandas) comes from the term “Panel Data” used in econometrics for analyzing time-series data. Pandas has many features, listed in the following, that make it a popular tool for data wrang

    2024年01月23日
    浏览(46)
  • python中pandas读写数据详解

    Pandas 是一种开源数据分析工具,可以帮助我们更方便地处理和分析数据。Pandas 提供了许多函数来读取各种格式的数据,例如 CSV、Excel、SQL 等。 读取 CSV 文件 CSV 文件是一种常用的数据格式,其中每行表示一条记录,每列表示一个字段。我们可以使用 Pandas 库中的 read_csv 函数

    2024年02月10日
    浏览(38)
  • 【Python数据处理】-Pandas笔记

    Pandas是一个强大的Python数据处理库,它提供了高效的数据结构和数据分析工具,使数据处理变得简单而快速。本篇笔记将介绍Pandas中最常用的数据结构——Series和DataFrame,以及数据处理的各种操作和技巧。 (一)创建Series Series是Pandas中的一维数组,类似于带有标签的NumPy数组

    2024年02月12日
    浏览(45)
  • 《Python数据分析技术栈》第06章使用 Pandas 准备数据 11 pandas中的运算符 Operators in Pandas

    《Python数据分析技术栈》第06章使用 Pandas 准备数据 11 pandas中的运算符 Operators in Pandas Pandas uses the following operators that can be applied to a whole series. While Python would require a loop to iterate through every element in a list or dictionary, Pandas takes advantage of the feature of vectorization implemented in NumPy that

    2024年01月23日
    浏览(50)
  • 头歌Python实训——pandas数据处理

    任务描述 本关任务: 超市销售数据如图所示 建立excel文件“类别销售”,根据不同类别建立多个工作表,将相同类别的销售信息存放在相应的工作表中。 相关知识 为了完成本关任务,你需要掌握:1.读取excel文件,2.筛选dataframe数据,3.将数据写入工作簿和工作表 从excel文件读

    2024年02月04日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包