MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】

这篇具有很好参考价值的文章主要介绍了MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、rvctools下载安装

rvctools下载地址:rvctools下载
截图如下,点击红色箭头指示的Download Shared Folder即可下载

MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】,机器人操作系统(ROS),matlab,机器人,开发语言

下载之后进行解压,解压到D:\MATLAB\toolbox这个工具箱目录,这个安装路径根据自己的情况来选择,没有安装MATLAB,感兴趣的可以查阅:MatLab的下载、安装与使用(亲测有效)

然后我们打开MATLAB,打开上面解压的这个机器人工具箱,双击startup_rvc.m,点击运行,如下图:

MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】,机器人操作系统(ROS),matlab,机器人,开发语言

这样就愉快的安装好了这个机器人工具箱了,其中startup_rvc.m的代码如下: 

function startup_rvc
    disp('Robotics, Vision & Control: (c) Peter Corke 1992-2020 http://www.petercorke.com')
    
    if verLessThan('matlab', '7.0')
        warning('You are running a very old (and unsupported) version of MATLAB.  You will very likely encounter significant problems using the toolboxes but you are on your own with this');
    end
    tb = false;
    startup_path = fileparts( mfilename('fullpath') );
    [~,folder]=fileparts(startup_path);
    if strfind(folder, 'common')
        % startup_rvc is in common folder
        rvcpath = fileparts(startup_path);
    else
        % startup_rvc is in folder above common
        rvcpath = startup_path;
    end
    
    robotpath = fullfile(rvcpath, 'robot');
    if exist(robotpath, 'dir')
        addpath(robotpath);
        tb = true;
        if exist('startup_rtb') == 2
            startup_rtb
        end
    end
    
    visionpath = fullfile(rvcpath, 'vision');
    if exist(visionpath, 'dir')
        addpath(visionpath);
        tb = true;
        if exist('startup_mvtb') == 2
            startup_mvtb
        end
    end
    
    if tb
        % RTB or MVTB is present
        
        % add spatial math toolbox
        p = fullfile(rvcpath, 'spatial-math');
        if exist(p, 'dir')
            try
                fp = fopen( fullfile(p, 'RELEASE'), 'r');
                release = fgetl(fp);
                fclose(fp);
            catch ME
                release = [];
            end
            if release
                release = ['(release ' release ')'];
            else
                release = '';
            end
            fprintf('- Spatial Math Toolbox for MATLAB %s\n', release)
            addpath(p);
        end
                
        % add common files
        addpath(fullfile(rvcpath, 'common'));
    else
        fprintf('Neither Robotics Toolbox or MachineVision Toolbox found in %s\n', rvcpath);
    end
        
    % check for any install problems
    rvccheck(false)
end

后期如果关闭了MATLAB,想要运行机器人的话,运行函数startup_rvc即可

2、运动学

机器人或者说飞行器,随着时间而发生动作变换,叫做运动学(kinematics),这个跟动力学(dynamics)是不一样的,动力学是研究影响运动的因素,而动力学是不考虑作用力和质量等因素,研究的是随着时间在空间中的位置问题。对于运动基本上就是平移和旋转了,就会牵涉到坐标系和角度等转换,接下来我们来学习下

2.1、平移

物体的平移比较简单,就是沿着XYZ三轴平移
沿着X轴平移:transl(2,0,0)

沿着Y轴平移:transl(0,2,0) 

沿着Z轴平移:transl(0,0,2) 

当然也可以在XYZ轴都进行平移:transl(1,3,2) 

我们对最后这个画图看下效果:trplot(transl(1,3,2)),如下图:

MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】,机器人操作系统(ROS),matlab,机器人,开发语言

我标注红点的位置是(1,3,2),因为是在三维空间的展示,所以看起来XYZ轴的数值不对,其实是对的,大家可以在MATLAB中的这张图进行拖动旋转,然后就会发现红点的坐标就是(1,3,2) 

2.2、旋转

旋转就是绕轴做圆周运动

绕X轴旋转:Rx = rotx(pi/2) 

绕Y轴旋转:Ry = roty(pi/2)

绕Z轴旋转:Rz = rotz(pi/2) 

旋转叠加:Rxy = Rx * Ry

动画演示:tranimate(Rxy),这样看起来非常清晰直观。 

我们来看下点(3,4),旋转60度的情况:

T1=SE2(3,4,pi/3)

T1 = 
    0.5000   -0.8660         3
    0.8660    0.5000         4
         0         0         1

对其画图:trplot(T1),如下:

MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】,机器人操作系统(ROS),matlab,机器人,开发语言

我们也可以使用transforms3d库中的结果,用来验证在MATLAB中生成的结果,代码如下:

import transforms3d as tfs
import math
print(tfs.euler.euler2mat(math.pi/3,0,0))
/*
[[ 1.         0.         0.       ]
 [ 0.         0.5       -0.8660254]
 [-0.         0.8660254  0.5      ]]
*/

 MATLAB中的结果如下:

T2=rotx(pi/3)
/*
T2 =

    1.0000         0         0
         0    0.5000   -0.8660
         0    0.8660    0.5000
*/

上述是弧度制,也可以使用角度制, 指定deg参数:rotx(60,'deg')

3、六轴机器人

3.1、Link关节连杆

这里我们使用更改的D-H参数,也就是接下来的Link函数指定modified参数 

L = Link([1 2 3 4],'modified')
%L = Revolute(mod): theta=q, d=2, a=3, alpha=4, offset=0

Link函数里面的参数分别表示为,关节角度[L1.theta]、连杆偏距[L1.d]、连杆长度[L1.a]、连杆旋转角度[L1.alpha],参数modified表示的是改进版本的DH参数
这里附带介绍下D-H的相关知识:
DH参数是一种描述机器人关节之间关系的参数化方法,由Denavit和Hartenberg提出。DH参数法可以用4个参数来表示刚体之间的相对关系,包括沿Z轴的平移长度a、沿共同法线的旋转角度α、在XZ平面内的偏移距离d、绕Z轴的旋转角度θ。
DH参数在ROS中被广泛应用,用于描述机器人关节和坐标系之间的关系,主要用于正向运动学计算,可以通过DH表获取每个关节的变换矩阵,将所有变换矩阵相乘,最终获得从基准坐标系到末端执行器坐标系的变换矩阵。
这个D-H方法是在运动学中求解比较通用的,其余还有李代数方法等。

连杆类型

L.type()
%ans =    'R'

也就是说这个是旋转的R(revolute)关节类型,除此之外还有一种是柱状形(prismatic)的关节

接下来就是分别创建6个关节,也就是为6轴的机械臂做准备:

L1 = Link([0 0 0 0],'modified')
L2 = Link([0 0.138+0.024 0 -pi/2],'modified')
L3 = Link([0 -0.127-0.024 0.42 0],'modified')
L4 = Link([0 0.114+0.021 0.375 0],'modified')
L5 = Link([0 0.114+0.021  0 -pi/2],'modified')
L6 = Link([0 0.09+0.021  0 pi/2],'modified')

3.2、SerialLink机械臂

上面定义好了6个关节,接下来我们使用SerialLink将这些关节连接起来成为一个六轴机械臂的机器人。 

MyBot = SerialLink([L1,L2,L3,L4,L5,L6],'name','Six Axis Robot')

我们先来看下SerialLink有哪些方法:help(SerialLink)

--- SerialLink 的帮助 ---

 SerialLink Serial-link robot class
 
  A concrete class that represents a serial-link arm-type robot.  Each link
  and joint in the chain is described by a Link-class object using Denavit-Hartenberg
  parameters (standard or modified).
 
  Constructor methods::
   SerialLink    general constructor
   L1+L2         construct from Link objects
 
  Display/plot methods::
   animate       animate robot model
   display       print the link parameters in human readable form
   dyn           display link dynamic parameters
   edit          display and edit kinematic and dynamic parameters
   getpos        get position of graphical robot
   plot          display graphical representation of robot
   plot3d        display 3D graphical model of robot
   teach         drive the graphical robot
 
  Testing methods::
   islimit       test if robot at joint limit
   isconfig      test robot joint configuration
   issym         test if robot has symbolic parameters
   isprismatic   index of prismatic joints
   isrevolute    index of revolute joints
   isspherical   test if robot has spherical wrist
   isdh          test if robot has standard DH model
   ismdh         test if robot has modified DH model
 
  Conversion methods::
   char          convert to string
   sym           convert to symbolic parameters
   todegrees     convert joint angles to degrees
   toradians     convert joint angles to radians

SerialLink类提供的方法,我们了解到可以用来描述机器人的连杆结构:SerialLink类描述机器人的连杆结构,包括每个连杆的长度、方向和旋转轴。有了这些信息,我们可以用于计算机器人的运动学模型,从而对机器人做出控制和运动规划。 

显示连接参数:MyBot.display()

MyBot = 
 
Six Axis Robot:: 6 axis, RRRRRR, modDH, slowRNE                  
+---+-----------+-----------+-----------+-----------+-----------+
| j |     theta |         d |         a |     alpha |    offset |
+---+-----------+-----------+-----------+-----------+-----------+
|  1|         q1|          0|          0|          0|          0|
|  2|         q2|      0.162|          0|    -1.5708|          0|
|  3|         q3|     -0.151|       0.42|          0|          0|
|  4|         q4|      0.135|      0.375|          0|          0|
|  5|         q5|      0.135|          0|    -1.5708|          0|
|  6|         q6|      0.111|          0|     1.5708|          0|
+---+-----------+-----------+-----------+-----------+-----------+

 操作机械臂:MyBot.teach()

 这样就会生成六轴机械臂的机器人,然后我们就可以通过操作不同关节来操作机器人的机械臂了,如下图:

MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】,机器人操作系统(ROS),matlab,机器人,开发语言

我们操作左边q1~q6,就会看到机械臂的运动以及XYZ轴和RPY欧拉角的变化

4、运动学

4.1、正运动学

运动学分为正解和逆解,正运动学(Forward kinematics):已知每个关节的位姿与连杆的长度等参数,求解末端执行器的位姿。
我们来看下正解

MyBot.fkine([pi/2 -pi/4 pi/2 pi/3 -pi/2 pi/6])
/*
ans = 
   -0.8660    0.5000         0    -0.146
   -0.4830   -0.8365    0.2588    0.4605
    0.1294    0.2241    0.9659     0.174
         0         0         0         1
*/

生成的是对应关节角度的末端的齐次变换矩阵。

4.2、逆运动学

逆运动学(Inverse kinematics)跟正运动学是反过来的,根据机器人的末端执行器的位姿,计算出机器人各个关节的位姿等运动参数。这个要复杂点,因为它的求解可能是不确定的唯一解,会产生多重解的问题,当然也可能得不到解析解的情况。

迭代法:

%起始状态
init = [0.795 0.257 -0.135 0 0 -pi/2]
%目标状态
targ = [0 0.836 -0.135 0 -pi/3 -pi/2]
T0=MyBot.fkine(init)
/*
T0 = 
    0.0852    0.6951   -0.7139    0.3501
    0.0869    0.7086    0.7003    0.7239
    0.9926   -0.1217         0   -0.2864
         0         0         0         1
*/
TF=MyBot.fkine(targ)
/*
TF = 
    0.6450    0.3821   -0.6618    0.4076
         0    0.8660    0.5000    0.2015
    0.7642   -0.3225    0.5586   -0.5947
         0         0         0         1
*/
%每次迭代的末端执行器相对于首端的齐次变换矩阵
step =50
%ctraj是Matlab中机器人轨迹(trajectory)规划的函数
TC=ctraj(T0,TF,step)
%比如迭代到第50次
/*
TC(50) = 
    0.6450    0.3821   -0.6618    0.4076
         0    0.8660    0.5000    0.2015
    0.7642   -0.3225    0.5586   -0.5947
         0         0         0         1
*/
qq = MyBot.ikine(TC,'mask',[1 1 1 0 0 0])

返回的就是50*6的双精度数组,长度是50:length(qq)

    0.7951    0.1852    0.0167   -0.0314    0.0432         0
    0.7946    0.1853    0.0174   -0.0303    0.0422         0
    0.7931    0.1856    0.0196   -0.0267    0.0394         0
......
   -0.1278    0.6478    0.4212    0.2245   -0.2429         0
   -0.1317    0.6494    0.4203    0.2230   -0.2419         0
   -0.1330    0.6500    0.4201    0.2226   -0.2416         0 

接下来我们使用ctraj来规划轨迹,使用ikine函数来做逆解,沿着轨迹进行运动。 

5、直线轨迹规划

这里使用标准的DH参数来测试下,三个自由度的机械臂如何做运动规划的,一起来了解下:

%这里是第一次开启MATLAB时,运行这个函数,启动rvc:startup_rvc
%参数:关节角、偏置距离、连杆长度、连杆扭角、sigma为0表示旋转关节
L1 = Link([0 84.72 41.04 pi/2 0]);
L2 = Link([0 0 200 0 0]);
L3 = Link([0 0 214.8 0 0]);
 
% 可以限制旋转角度范围
L1.qlim = [deg2rad(-170) deg2rad(170)];
L2.qlim = [deg2rad(-60) deg2rad(85)];
L3.qlim = [deg2rad(-90) deg2rad(10)];

Bot2 = SerialLink([L1 L2 L3], 'name', '机械臂运动学');
%手动操作关节进行旋转
Bot2.teach()

%起点
T1 = transl(100,-10,50);
%终点
T2 = transl(300,-30,200);
%规划轨迹(trajectory)
T = ctraj(T1,T2,50);
Tj = transl(T);
%输出末端轨迹
plot3(Tj(:,1),Tj(:,2),Tj(:,3));
%当反解的机械臂自由度少于6时,要用mask掩码减少自由度,否则无法直接调用ikine作为运动学反解函数
q = Bot2.ikine(T,'mask',[1 1 1 0 0 0]);
Bot2.plot(q);

 这样就会看到沿着规划好的直线,自动进行运动了,简单起见截个图如下(实质是运动的):

MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】,机器人操作系统(ROS),matlab,机器人,开发语言

6、圆轨迹规划

N = (0:0.5:100)'; 
center = [200 -150 -50];
radius = 60;
theta = (N/N(end))*2*pi;
points = (center + radius*[cos(theta) sin(theta) zeros(size(theta))])';  
plot3(points(1,:),points(2,:),points(3,:),'r');

%沿着圆的轨迹平移
T = transl(points');
q2 = Bot2.ikine(T,'mask',[1 1 1 0 0 0]);
Bot2.plot(q2);

这样就会看到沿着规划好的圆,自动进行运动了,简单起见截个图如下(实质是运动的):

MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】,机器人操作系统(ROS),matlab,机器人,开发语言 

7、常见用法

其余的一些常见用法,如下:
关节数:MyBot.n
画出机械臂:MyBot.plot([0 0 0 0 0 0])
机器人的结构类型:Mybot.config
关节范围:MyBot.qlim
连杆向量(更直观):MyBot.links
重力方向([gx gy gz]):MyBot.gravity
连杆的动力学属性:MyBot.dyn
是否是旋转关节:MyBot.isrevolute
是否是移动关节:MyBot.isprismatic
是否是球关节:MyBot.isspherical
关节与连杆是否有符号参数:MyBot.issym
可以编辑动力学参数:MyBot.edit

 

8、小结

文章主要介绍了机器人工具箱rvctools,以及它的用法,了解运动学的相关知识,对坐标的变换,轨迹的规划等有个直观的了解,最后在进行运动规划的时候,有时候会出现下面这样的错误:
警告: failed to converge: try a different initial value of joint coordinates 
收敛失败:尝试不同的关节坐标初始值
这样的情况一般是关节不能到达那个坐标,所以需要更改坐标为合理值即可。
另外仔细观察代码中会出现一些矩阵带单引号',这个表示转置的意思,比如:
size(N)的形状是1 x 201,而size(N')的形状就是201 x 1
元素个数numel(N) 结果:201,维度ndims(N) 结果:2 文章来源地址https://www.toymoban.com/news/detail-753031.html

到了这里,关于MATLAB的rvctools工具箱熟悉运动学【机械臂机器人示例】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MATLAB cftool工具箱——曲线拟合

        cftool工具箱可以将数据点拟合成曲线或曲面并直观显示出图像。能实现多种类型的线性、非线性曲线/面拟合。     有两种方式打开cftool:(1)在命令行窗口输入\\\"cftool\\\"并回车;(2)在MATLAB的\\\"APP\\\"选项栏中找到\\\"Curve Fitting\\\"程序打开即可。     界面左上部分为数据区域,下拉框中

    2024年02月08日
    浏览(31)
  • 【MATLAB第57期】基于MATLAB的双隐含层BP神经网络回归预测模型(无工具箱版本及工具箱版本对比)

    数据为案例数据 。103行样本,7输入1输出数据。 训练集数据的R2为:0.9022 测试集数据的R2为:0.87266 训练集数据的MAE为:1.8189 测试集数据的MAE为:2.1658 训练集数据的MBE为:-0.00088469 测试集数据的MBE为:0.3059 数据与无工具版本相同,数据顺序也相同。 训练集数据的R2为:1 测试

    2024年02月16日
    浏览(31)
  • 遗传算法与Matlab GA工具箱

    GA是一种进化算法,基本原理效仿生物界“物竞天择,适者生存”的演化法则。 一些基本概念 种群population:问题潜在的解集 个体individual:每一个可能的解,通过基因编码一定数目的个体形成一个种群 适应度fitness:由此判断个体的优良,进而进行选择 选择selection、交叉cr

    2024年02月09日
    浏览(41)
  • Matlab样条工具箱及曲线拟合

    Matlab样条工具箱提供了样条的建立、操作、绘制等功能. 建立一个样条曲线或曲面,根据前缀可分为4类: 前缀 类别 cs* 三次样条 pp* 分段多项式样条 sp* B样条,系数为基函数系数 rp* 有理B样条 函数操作:求值、求导数、求积分等; 节点操作:节点重数的设定、修改等. 1.三次

    2024年02月08日
    浏览(38)
  • matlab机器人工具箱基础使用

    资料:https://blog.csdn.net/huangjunsheng123/article/details/110630665 test1.m

    2024年02月12日
    浏览(30)
  • 在Matlab中安装LibSVM工具箱

    1 下载工具箱 地址:LibSVM下载地址 下拉网页: 2 注意事项: 2.1 注意测试数据 ==官网下载的数据包中没有Matlab对应的数据集格式,点此下载:heart_scale.mat.== 链接: https://pan.baidu.com/s/15LYMilm8asw9EYkHmifLyg 提取码: trws 复制这段内容后打开百度网盘手机App,操作更方便哦 –来自百度

    2024年02月04日
    浏览(28)
  • matlab系统辨识工具箱及其反向验证

    系统辨识工具箱 什么时候使用系统辨识,当系统传递函数不确定(在多大程度上不确定?)时,通过对输入输出数据采集,通过数学迭代找到控制对象的近似模型。在找到近似模型(传递函数)后,就可以使用线性化调参工具对系统控制参数进行整定,进行控制系统设计。 调用命

    2024年02月05日
    浏览(36)
  • MATLAB曲线拟合工具箱(cftool)介绍(完结)

    本文通过实例对MATLAB曲线拟合工具箱进行详细讲解,帮助大家更容易理解曲线拟合工具箱(cftool)。 已知 x = [0 0.2 0.50.8 0.9 1.3 1.4 1.9 2.1 2.2 2.5 2.6 2.9 3.0]; y = [1.27792.1596 2.7311 2.5974 2.4068 1.6215 1.4178 0.9955 0.9666 0.8837 0.9639 1.00311.1233 1.1583]; 并且根据某种物理或数学关系确定y=f(x)的表达

    2024年02月02日
    浏览(26)
  • 【Matlab】相机标定(计算机视觉工具箱)

    图像处理和计算机视觉是Matlab的一个主要应用领域,这部分包括4个工具箱——图像处理、计算机视觉、雷达、医学图像。由于视觉的东西容易呈现,所以先从计算机视觉工具箱学起。 官方文档对计算机视觉工具箱的介绍如下:设计和测试计算机视觉、3D 视觉和视频处理系统

    2024年02月05日
    浏览(86)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包