stm32之PWM呼吸灯

这篇具有很好参考价值的文章主要介绍了stm32之PWM呼吸灯。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        呼吸灯是灯从渐亮到渐灭周而复始形成的一个效果。由于51没有PWM所以需要定时器模拟PWM才能实现呼吸灯的效果,但是stm32的通用定时器是有PWM模式的,所以不需要再用软件模拟,精准度也高。

本实验用的基于stm32f103C8t6。在PB8引脚上接了一个led, led的另一端接到vcc上。

PB8除了是一个GPIO功能,还有一个复用功能即定时器4的channel 3功能。可以通过参考手册知晓。

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

一、利用CubeMX生成代码

具体配置就不细说了,这里将TIM4的关键配置标了出来

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

记得选中PWM 的模式1 和使能比较输出,CH Polarity设置Low 和 High 在呼吸灯这里无影响。

影响的无非是上电时是从亮到灭还是从灭到亮。 

1.1、计数器配置

时钟的溢出配置公式如下:

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

这里将定时器设置为500ms,即Tout = 500ms,同时PSC = 71,ARR = 499, Tclk = 72MHZ。根据公式计算出Tout = (71 + 1) * (499 + 1) / 72000000 = 500ms。

1.2、main函数代码配置

int main(void)
{
	uint16_t pwmVal = 0;
	uint8_t dir = 1;

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* Configure the system clock */
  SystemClock_Config();

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM4_Init();
  /* USER CODE BEGIN 2 */	
  // 开启定时器4
  HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_3);

  while (1)
  {
		
		HAL_Delay(1);
		if(dir) {
			pwmVal ++;
		} else {
			pwmVal--;
		}
		if(pwmVal > 500) {
			dir = 0;
		} else if(pwmVal <= 0) {
			dir = 1;
		}
		__HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_3, pwmVal);
/*		
		// 常亮
   __HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_3, 0); 
	 // 常灭
		__HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_3, 500); 
		*/
  }
}

二、PWM分析

        输出比较就是通过定时器的外部引脚对外输出控制信号,有八种模式,由寄存器 CCMRx 的位 OCxM[2:0]控制。
  1. 000:冻结。输出比较寄存器TIMx_CCR1与计数器TIMx_CNT间的比较对OC1REF不起作用;
  2. 001 :匹配时设置通道 1 为有效电平。当计数器 TIMx_CNT 的值与TIMx_CCR1相同时,强制OC1REF为高。
  3. 010 :匹配时设置通道 1 为无效电平。当计数器 TIMx_CNT 的值与TIMx_CCR1相同时,强制OC1REF为低。
  4. 011:翻转。当TIMx_CCR1=TIMx_CNT时,翻转OC1REF的电平。
  5. 100:强制为无效电平。强制OC1REF为低。
  6. 101:强制为有效电平。强制OC1REF为高。
  7. 110PWM模式1- 在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为有效电平,否则为无效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为无效电(OC1REF=0),否则为有效电平(OC1REF=1)
  8. 111PWM模式2- 在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为无效电平,否则为有效电平;在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为有效电平,否则为无效电平。
其中 PWM 模式是输出比较中的特例,使用的也最多。在PWM的模式1或2下,会一直进行 TIMx_CNT和TIMx_CCRx的比较。
  • PWM中GPIO引脚电平输出是由OCx来决定的而不是由OCxREF来决定的。
  • 正常GPIO的引脚电平输出由寄存器ODR来决定的(可以配置BSRR来决定ODR的输出)

下图是捕获/比较的输出阶段:

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

根据上图可以推出四种结果分别是

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

2.1、有效电平

PWM模式1

  • 在向上计数时,一旦TIMx_CNT < TIMx_CCR1时通道1为有效电平,否则为无效电平;
  • 在向下计数时,一旦TIMx_CNT > TIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)
  • TIMx_CCRx > TIMx_ARR时 OCxREF = 1
  • TIMx_CCRx = 0时OCxREF = 0

PWM模式2

  • 在向上计数时,一旦TIMx_CNT<TIMx_CCR1时通道1为无效电平,否则为有效电平
  • 在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为有效电平,否则为无效电

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

上图中绿框部分是有效的电平。这里有有效电平是OCxREF 参考电平。

OCx有效电平

手册中还有另外一个描述就是:

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

翻译一下就是:

输出部分产生一个中间波形OCxRef(高有效)作为基准,链的末端决定最终输出信号的极性。

“链的末端决定最终输出信号的极性” 怎么解释,这个可以通过CCIP位的说明可以看出来。
CC1P : Capture/Compare 1 output polarity
CC1 channel configured as output:
  • 0: OC1 active high.
  • 1: OC1 active low.

CC1通道作为输出模式

  • 当CCIP = 0时,OC1 = 1是有效电平,
  • 当CCIP = 1时,OC1 = 0是有效电平

2.2、PWM功能下GPIO引脚输出电平

在参考文档中有这样一个表格:

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

CCxE = 0时,禁止OCx输出,CCxE = 1时,OCx = OCxREF + Polarity

这里的OCxREF + Polarity是什么意思。这里先说明下这里是xor(异或)的意思。

我们可以从以下分析出:

在参考文档中的TIM1定时器章节有这样一个表格:

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

红色框中圈住的部分写出了OCx = OCxREF xor CCxP,当然这个表格是在TIM1和TIM8里出现的,像表格中的MOE,OSSI,OSSR,CCxNE,都是在TIM1和TIM8寄存器中存在的,在通用定时器里是没有的。

MOE,OSSI,OSSR存在于TIM1和TIM8寄存器中的BDTR,CCxNP和CCxNE也只存在于TIM1和TIM8定时器中的CCER寄存器。

TIM1和TIM8中的CCERstm32pwm呼吸灯,stm32,嵌入式硬件,单片机

通用定时器中的CCER (reserved部分要保持为0,即保持reset时的值)

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

在通用定时器里面,OSSR 无效, CCxNE = 0, OSSI无效,MOE 无效,所以异或操作还是适用的。

  • 当CCIP = 0时,OC1 = 1是有效电平,
  • 当CCIP = 1时,OC1 = 0是有效电平

和 OCx = OCxREF xor CCxP

得出以下最终结果(绿色部分为有效输出):

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

总结:

  • 1、PWM的模式用来区分有效电平在哪个区间输出 ,并不能区分是有效电平是高还是低
  • 2、有效的电平的输出OCx由CCER寄存器的CCxP位来决定。
  • 3、CCxP = 0时(默认),输出与OCxREF相同的波
  • 4、CCxP = 1时,输出与OCxREF相反的波

三、代码分析

PWM的主要流程大致如下:

  1. 初始化TIM4
  2. 开启TIM4的PWM模式
  3. 设置CCR1用于动态配置PWM波形的输出

 代码主要是根据 定时器4的channel 3 + 向上计数模式 + 500ms 定时周期 这个为中心产生的。定时器涉及的寄存器比较多,定时总共有20种寄存器,在PWM输出模式下,用到的其实并不多。涉及的寄存器如下:

CR1 (control register)

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

CR2 (control register)

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

SMCR (slave mode control register)

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

EGR (event generation register)

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机 CCMR (capture/compare mode register 2 )

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

CCER (capture/compare enable register )

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

下面三个主要用来装载数据和配置无关

CNT (counter)

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

ARR (auto-reload register )

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

CCR3 (capture/compare register 3 )

stm32pwm呼吸灯,stm32,嵌入式硬件,单片机

3.1、MX_TIM4_Init

函数比较长,大致将功能分了下类,具体函数如下:

void MX_TIM4_Init(void)
{

	// 这里主要是根据功能将寄存器分成几个模块进行配置
	// 时钟相关配置
  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
	// 主从模式配置
  TIM_MasterConfigTypeDef sMasterConfig = {0};
	// 定时器输出捕获常规配置
  TIM_OC_InitTypeDef sConfigOC = {0};

  htim4.Instance = TIM4;
  htim4.Init.Prescaler = 71;
  htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim4.Init.Period = 499;
  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
	
	// 1、定时器常规初始化
  if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
	
	// 2、定时器时钟配置
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
	
	// 3、定时器PWM初始化
  if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
	
	// 4、定时器主从模式配置
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
	// 5、定时器channel配置
  if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
  {
    Error_Handler();
  }
	
	// 6、定时器主栈地址初始化
  HAL_TIM_MspPostInit(&htim4);

}

上面主要做了下面几件事

  • 1、定时器常规初始化(时基单元相关)
  • 2、定时器时钟配置
  • 3、定时器PWM初始化
  • 4、定时器主从模式配置
  • 5、定时器channel配置
  • 6、定时器主栈地址初始化(实际上就是使能定时器)

下面主要针对上面的过程进行描述

3.1.1、定时器相关类型

TIM_TypeDef

typedef struct
{
  __IO uint32_t CR1;             /*!< TIM control register 1,                      Address offset: 0x00 */
  __IO uint32_t CR2;             /*!< TIM control register 2,                      Address offset: 0x04 */
  __IO uint32_t SMCR;            /*!< TIM slave Mode Control register,             Address offset: 0x08 */
  __IO uint32_t DIER;            /*!< TIM DMA/interrupt enable register,           Address offset: 0x0C */
  __IO uint32_t SR;              /*!< TIM status register,                         Address offset: 0x10 */
  __IO uint32_t EGR;             /*!< TIM event generation register,               Address offset: 0x14 */
  __IO uint32_t CCMR1;           /*!< TIM  capture/compare mode register 1,        Address offset: 0x18 */
  __IO uint32_t CCMR2;           /*!< TIM  capture/compare mode register 2,        Address offset: 0x1C */
  __IO uint32_t CCER;            /*!< TIM capture/compare enable register,         Address offset: 0x20 */
  __IO uint32_t CNT;             /*!< TIM counter register,                        Address offset: 0x24 */
  __IO uint32_t PSC;             /*!< TIM prescaler register,                      Address offset: 0x28 */
  __IO uint32_t ARR;             /*!< TIM auto-reload register,                    Address offset: 0x2C */
  __IO uint32_t RCR;             /*!< TIM  repetition counter register,            Address offset: 0x30 */
  __IO uint32_t CCR1;            /*!< TIM capture/compare register 1,              Address offset: 0x34 */
  __IO uint32_t CCR2;            /*!< TIM capture/compare register 2,              Address offset: 0x38 */
  __IO uint32_t CCR3;            /*!< TIM capture/compare register 3,              Address offset: 0x3C */
  __IO uint32_t CCR4;            /*!< TIM capture/compare register 4,              Address offset: 0x40 */
  __IO uint32_t BDTR;            /*!< TIM break and dead-time register,            Address offset: 0x44 */
  __IO uint32_t DCR;             /*!< TIM DMA control register,                    Address offset: 0x48 */
  __IO uint32_t DMAR;            /*!< TIM DMA address for full transfer register,  Address offset: 0x4C */
  __IO uint32_t OR;              /*!< TIM option register,                         Address offset: 0x50 */
}TIM_TypeDef;

TIM_TypeDef 结构体包括了定时器所有的寄存器,通过操作结构体就可以操作寄存器。在初始化的时候有这样一句代码 htim4.Instance = TIM4 这里的TIM4就是定时器4在外设中的地址,TIM4也是一个宏,具体就不展开了,它的定义和 GPIO类似,可参考GPIO,或自行在代码中查看。

TIM_HandleTypeDef

typedef struct
{
  uint32_t Prescaler;        // 配置时基单元中的预分频器    
  uint32_t CounterMode;      // 计数模式(向上/向下/中央对齐)
  uint32_t Period;           // 定时周期(period + 1)
  uint32_t ClockDivision;    // 时钟分频因子
  uint32_t RepetitionCounter; // 重复定时器(高级定时器中用)
  uint32_t AutoReloadPreload; // 是否自动重装初值
} TIM_Base_InitTypeDef;

HAL_TIM_ActiveChannel (选中的channel)

typedef enum
{
  HAL_TIM_ACTIVE_CHANNEL_1        = 0x01U,    /*!< The active channel is 1     */
  HAL_TIM_ACTIVE_CHANNEL_2        = 0x02U,    /*!< The active channel is 2     */
  HAL_TIM_ACTIVE_CHANNEL_3        = 0x04U,    /*!< The active channel is 3     */
  HAL_TIM_ACTIVE_CHANNEL_4        = 0x08U,    /*!< The active channel is 4     */
  HAL_TIM_ACTIVE_CHANNEL_CLEARED  = 0x00U     /*!< All active channels cleared */
} HAL_TIM_ActiveChannel;

TIM_HandleTypeDef(保存定时器相关配置,状态和方法,下面进行了精简)

{
  TIM_TypeDef                        *Instance;  // 定时器寄存器集合       
  TIM_Base_InitTypeDef               Init;       // 定时器基本配置       
  HAL_TIM_ActiveChannel              Channel;     //使用的channel
  DMA_HandleTypeDef                  *hdma[7];          
  HAL_LockTypeDef                    Lock;          //是否进行锁定,配置完成之后都要进行锁定    
  __IO HAL_TIM_StateTypeDef          State;          //定时器状态   
  __IO HAL_TIM_ChannelStateTypeDef   ChannelState[4];   // channel的状态,总共有四个channel
  __IO HAL_TIM_ChannelStateTypeDef   ChannelNState[4];  
  __IO HAL_TIM_DMABurstStateTypeDef  DMABurstState;     

  // 函数指针就写了一个,其它的看源码哈
  void (* Base_MspInitCallback)(struct __TIM_HandleTypeDef *htim); 
} TIM_HandleTypeDef;
3.1.2、定时器常规初始化
下面的代码也进行了精简,方便看主要的过程。
HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
{
  /* Check the TIM handle allocation */
  if (htim == NULL)
  {
    return HAL_ERROR;
  }

  // 结构体初始化时未设置,默认是RESET状态
  if (htim->State == HAL_TIM_STATE_RESET)
  {
    htim->Lock = HAL_UNLOCKED;
    // 由于未注册定时器回调,这里把回调相关的方法删除了
    HAL_TIM_Base_MspInit(htim);
  }
    
  // 设置busy状态,防止操作定时器
  htim->State = HAL_TIM_STATE_BUSY;
    
  // 将Init中的配置同步到Tim4的寄存器中
  TIM_Base_SetConfig(htim->Instance, &htim->Init);
   
  // 未涉及DMA
  htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
   
  //将四个channel设置成ready
  TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
  //将四个互补channel设置成ready(暂时无用)
  TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);

  // 设置就绪状态
  htim->State = HAL_TIM_STATE_READY;

  return HAL_OK;
}

初始化核心代码是TIM_Base_SetConfig这个函数,具体实现如下

void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
{
  uint32_t tmpcr1;
  tmpcr1 = TIMx->CR1;

  // 只要是TIM1-4 就会成立(这是一个简单的宏)
  if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
  {
    // 清除CR1寄存器中的DIR 和CMS位
    // DIR是CR1中的第4位,CMS是5 6 位
    // DIR = 10000b  CMS = 1100000
    // 下面的意思是将DIR和CMS清0
    tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
    // 重新设置计数模式, 这里只设置了DIR,CMS保持00,00状态就是边沿对齐模式(向上或向下)
    // 下面的意思就是设置了边沿对齐的向上计数模式
    tmpcr1 |= Structure->CounterMode;
  }

  // 只要是TIM1-4 就会成立(这是一个简单的宏)
  if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
  {
    // 清除时钟分频因子TIM_CR1_CKD = 1100000000b,下面就是清除CKD
    tmpcr1 &= ~TIM_CR1_CKD;
    // 重新配置时钟分频因子,本安全中外部传入的是0
    tmpcr1 |= (uint32_t)Structure->ClockDivision;
  }

  // 这里先清除CR1中ARPE位,然后根据AutoReloadPreload配置,就是是否使能自动重装初值
  MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
  // 配置CR1 寄存器
  TIMx->CR1 = tmpcr1;

  // 配置ARR自动重装寄存器
  TIMx->ARR = (uint32_t)Structure->Period ;

  // 配置PSC寄存器
  TIMx->PSC = Structure->Prescaler;
  
  //TIM1 才有效
  if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
  {
    /* Set the Repetition Counter value */
    TIMx->RCR = Structure->RepetitionCounter;
  }
  // 配置事件产生寄存器UG代码第0位,数值1代表定时器溢出时会产生更新事件
  TIMx->EGR = TIM_EGR_UG;
}

上面的代码主要是设置CR1、ARR、PSC、EGR和RCR(TIM1才有效)寄存器。

3.1.3、定时器时钟配置

项目中用到的是内部时钟,所以代码简化如下,这个函数主要处理SMCR寄存器的配置。

HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
{
  HAL_StatusTypeDef status = HAL_OK;
  uint32_t tmpsmcr;

  __HAL_LOCK(htim);

  htim->State = HAL_TIM_STATE_BUSY;

  tmpsmcr = htim->Instance->SMCR;
  // 下面的意思重置从模式寄存器所有位除了MSM位,
  tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
  tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
  htim->Instance->SMCR = tmpsmcr;

  htim->State = HAL_TIM_STATE_READY;

  __HAL_UNLOCK(htim);

  return status;
}
3.1.4、定时器PWM初始化

由于未开启PWM回调, 这里的操作和定时器常规初始化几乎一样

HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
{

  if (htim->State == HAL_TIM_STATE_RESET)
  {
    htim->Lock = HAL_UNLOCKED;

// 这里的条件不成立
#if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
    /* Reset interrupt callbacks to legacy weak callbacks */
    TIM_ResetCallback(htim);

    if (htim->PWM_MspInitCallback == NULL)
    {
      htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
    }
    htim->PWM_MspInitCallback(htim);
#else
    /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
		// 这里是一个空操作
    HAL_TIM_PWM_MspInit(htim);
#endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
  }

  /* Set the TIM state */
  htim->State = HAL_TIM_STATE_BUSY;

  // 重新走了一下定时器的配置
  TIM_Base_SetConfig(htim->Instance, &htim->Init);

  htim->DMABurstState = HAL_DMA_BURST_STATE_READY;

  TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
  TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);

  htim->State = HAL_TIM_STATE_READY;

  return HAL_OK;
}
3.1.5、定时器主从模式配置

代表也非常简单,大致如下:

HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim,
                                                        const TIM_MasterConfigTypeDef *sMasterConfig)
{
  uint32_t tmpcr2;
  uint32_t tmpsmcr;
  __HAL_LOCK(htim);
  htim->State = HAL_TIM_STATE_BUSY;

  tmpcr2 = htim->Instance->CR2;

  tmpsmcr = htim->Instance->SMCR;

  // 清除CR2寄存器中的MMS位,即 4 5 6 都是0
  tmpcr2 &= ~TIM_CR2_MMS;
  // 设置新的MMS主模式选择
  tmpcr2 |=  sMasterConfig->MasterOutputTrigger;

  // 将CR2配置到寄存器中
  htim->Instance->CR2 = tmpcr2;
  
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
    // 清除SMCR中的msm(主从模式选择)
    tmpsmcr &= ~TIM_SMCR_MSM;
    // 外部传入的是DISABLE	= 0,0代表无作用
    tmpsmcr |= sMasterConfig->MasterSlaveMode;
	  // 设置回寄存器
    htim->Instance->SMCR = tmpsmcr;
  }

  htim->State = HAL_TIM_STATE_READY;

  __HAL_UNLOCK(htim);

  return HAL_OK;
}
3.1.6、定时器主从模式配置

选调用 HAL_TIM_PWM_ConfigChannel,内部对channel3的处理如下


     TIM_OC3_SetConfig(htim->Instance, sConfig);

      /* Set the Preload enable bit for channel3 */
      htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;

      /* Configure the Output Fast mode */
      htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
      htim->Instance->CCMR2 |= sConfig->OCFastMode;
      break;

核心代码 是TIM_OC3_SetConfig函数

static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
{
  uint32_t tmpccmrx;
  uint32_t tmpccer;
  uint32_t tmpcr2;

  tmpccer = TIMx->CCER;

  // 清除CCE使能位
  TIMx->CCER &= ~TIM_CCER_CC3E;

  tmpcr2 =  TIMx->CR2;
  tmpccmrx = TIMx->CCMR2;

	// 清除CCMR2(输入捕获寄存器)0C3M(输出比较3模式),CC3S(捕获比较3选择)
  tmpccmrx &= ~TIM_CCMR2_OC3M;
  tmpccmrx &= ~TIM_CCMR2_CC3S;
  // 外部设置的 TIM_OCMODE_PWM1即110 0000(向上计数模式)
  tmpccmrx |= OC_Config->OCMode;

  // 清除CCER(输入捕获寄存器)极性位
  tmpccer &= ~TIM_CCER_CC3P;
  // 外部传入的HIGH = 0,CC3E = 0 禁止输出
  tmpccer |= (OC_Config->OCPolarity << 8U);

  /* Write to TIMx CR2 */
  TIMx->CR2 = tmpcr2;

  /* Write to TIMx CCMR2 */
  TIMx->CCMR2 = tmpccmrx;

  /* Set the Capture Compare Register value */
  TIMx->CCR3 = OC_Config->Pulse;

  /* Write to TIMx CCER */
  TIMx->CCER = tmpccer;
}

3.1.7、主栈地址初始化

里面就是就是使能了一下timer定时器

void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle)
{

  if(tim_baseHandle->Instance==TIM4)
  {
    /* TIM4 clock enable */
    __HAL_RCC_TIM4_CLK_ENABLE();
  }
}

3.2、开启TIM4的PWM模式

HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
{
  uint32_t tmpsmcr;

  /* Check the parameters */
  assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));

  /* Check the TIM channel state */
  if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
  {
    return HAL_ERROR;
  }

  // 将channel设置成busy(这里传入的是channel3)
  TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);

  // 使能channel 3
  TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);

	// TIM1才会进
  if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
  {
    /* Enable the main output */
    __HAL_TIM_MOE_ENABLE(htim);
  }

  /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
  if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
  {
		// 获取SMCR 中0-2位(SMS) ,外部SMS是关闭的即0
    tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
		
		// 这个比较不成功 000 != 110
    if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
    {
			// 使能CR1的第0位CEN开启计数
      __HAL_TIM_ENABLE(htim);
    }
  }
  else
  {
    __HAL_TIM_ENABLE(htim);
  }

  /* Return function status */
  return HAL_OK;
}

核心代码就是使能通道3

void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
{
  uint32_t tmp;

  /* Check the parameters */
  assert_param(IS_TIM_CC1_INSTANCE(TIMx));
  assert_param(IS_TIM_CHANNELS(Channel));

	// 外部是Channel3 = 1000 ,Channel & 0x1FU = 1000,
  tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */

  // 清除CC3E
  TIMx->CCER &= ~tmp;

  // 这里ChannelState = Enable = 1, 使能CC3E
  TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
}

3.3、设置CCR1用于动态配置PWM波形的输出

更改CCR3,来设置占空比。

#define __HAL_TIM_SET_COMPARE(__HANDLE__, __CHANNEL__, __COMPARE__) \
  (((__CHANNEL__) == TIM_CHANNEL_1) ? ((__HANDLE__)->Instance->CCR1 = (__COMPARE__)) :\
   ((__CHANNEL__) == TIM_CHANNEL_2) ? ((__HANDLE__)->Instance->CCR2 = (__COMPARE__)) :\
   ((__CHANNEL__) == TIM_CHANNEL_3) ? ((__HANDLE__)->Instance->CCR3 = (__COMPARE__)) :\
   ((__HANDLE__)->Instance->CCR4 = (__COMPARE__)))

#define __HAL_TIM_SetCompare            __HAL_TIM_SET_COMPARE

__HAL_TIM_SetCompare(&htim4, TIM_CHANNEL_3, pwmVal);

四、总结

1、HAL 中每次在设置相应的位时都会先清除一下,清除时设置的宏对应位是1。

tmpcr1 &= ~TIM_CR1_CKD;
tmpcr1 |= (uint32_t)Structure->ClockDivision;

2、定时器单线程初始化时通常会加锁,完成之后解锁(别忘解锁)。

 __HAL_LOCK(htim);

__HAL_UNLOCK(htim);

// 加锁时会判断有没有锁住,没有锁住再加锁,有锁就直接返回
#define __HAL_LOCK(__HANDLE__)                                           \
                                do{                                        \
                                    if((__HANDLE__)->Lock == HAL_LOCKED)   \
                                    {                                      \
                                       return HAL_BUSY;                    \
                                    }                                      \
                                    else                                   \
                                    {                                      \
                                       (__HANDLE__)->Lock = HAL_LOCKED;    \
                                    }                                      \
                                  }while (0U)
// 返回时直接解锁
#define __HAL_UNLOCK(__HANDLE__)                                          \
                                  do{                                       \
                                      (__HANDLE__)->Lock = HAL_UNLOCKED;    \
                                    }while (0U)

代码地址文章来源地址https://www.toymoban.com/news/detail-753042.html

到了这里,关于stm32之PWM呼吸灯的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 嵌入式PWM实验报告

    实验报告书 一、实验内容与目的 实验内容 : 通过对 Exynos4412 的 PWM 的操作,控制实验箱的蜂鸣器实现发声,并播放音乐。 实验目的 : 掌握使用 Cortex-A9 控制 PWM 的方法。 掌握 Cortex-A9 的 PWM 寄存器的配置方法。 掌握驱动的编写步骤。 熟悉 VMware+RedHat+XShell+ARM-Linux 交叉编译开

    2024年02月07日
    浏览(49)
  • 嵌入式学习笔记——STM32硬件基础知识

    上一篇中我们重点是讲了一下怎么搭建开发环境以及怎么下载烧录的过程,这都是解决的电脑端的开发环境问题,还没有到实际的开发板上,我们的单片机是都是焊接在开发板上的,PCB上有着它所需的工作电路。并不是直接给供电电压就可以让其工作的,本文主要是简介一下

    2024年01月22日
    浏览(75)
  • 嵌入式项目分享 stm32智能运动计步系统 - 物联网 嵌入式 单片机

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(76)
  • 嵌入式学习笔记——PWM与输入捕获(下)

    上一篇介绍了通用定时器的输出比较部分,这一篇再来介绍一下输入捕获的相关内容。 输入捕获,见名知意,就用来对输入信号进行捕获的,说到捕获输入信号,之前介绍过一个叫做外部中断的片上外设,它的作用也是捕获输入;它们的不同在于,外部中断捕获的只是边沿,

    2024年02月06日
    浏览(45)
  • 单片机STM32看门狗详解(嵌入式学习)

    单片机STM32的看门狗(Watchdog)是一种硬件定时器,用于监控系统的运行状态并在出现故障或死锁时采取措施以恢复正常操作。看门狗的主要功能是定期检查系统是否正常运行,并在系统出现问题时触发复位操作。 STM32系列单片机通常配备了内置的看门狗定时器(通常称为独立

    2024年02月13日
    浏览(63)
  • 嵌入式项目分享 stm32机器视觉的口罩佩戴检测系统 - 单片机 物联网 嵌入式

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(152)
  • STM32F103RCT6开发板M3单片机教程07-TIMER1CH1输出 PWM做LED呼吸灯

    本教程使用是( 光明谷SUN_STM32mini开发板 )   免费开发板   在谷动谷力社区注册用户,打卡,发帖求助都可以获取积分,当然最主要是发原创应用文档奖励更多积分. (可用积分换取,真的不用钱,开发板免费玩):STM32F103RCT6开发板M3单片机核芯小系统板学习板 ... 已经购买用

    2024年02月22日
    浏览(68)
  • stm32之PWM呼吸灯

            呼吸灯是灯从渐亮到渐灭周而复始形成的一个效果。由于51没有PWM所以需要定时器模拟PWM才能实现呼吸灯的效果,但是stm32的通用定时器是有PWM模式的,所以不需要再用软件模拟,精准度也高。 本实验用的基于stm32f103C8t6。在PB8引脚上接了一个led, led的另一端接到

    2024年02月05日
    浏览(37)
  • 嵌入式毕设分享 基于单片机的风速测量系统 - 物联网 嵌入式 stm32 arduino

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(69)
  • 嵌入式毕设分享 基于单片机的智能音响设计与实现 -物联网 嵌入式 stm32

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月22日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包