论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》

这篇具有很好参考价值的文章主要介绍了论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

摘要

介绍

已有方法回顾

普通方法

基于亮度的方法

基于深度学习的方法

基于图像去噪的方法

提出的方法

2.1 Layer Decomposition Net

2.2 Reflectance Restoration Net

2.3 Illumination Adjustment Net

实验结果

总结


Kindling the Darkness: A Practical Low-light Image Enhancer(KinD)

ACM MM 2019

Yonghua Zhang, Jiawan Zhang, Xiaojie Guo (天津大学)

论文地址:http://cic.tju.edu.cn/faculty/zhangjiawan/Jiawan_Zhang_files/paper/yonghuazhang2019-2.pdf

项目地址:

https://github.com/zhangyhuaee/KinD

摘要

        在弱光条件下拍摄的图像通常能见度较差。除了不理想的照明,多种类型的退化,如噪音和颜色失真,由于相机的质量有限,这些退化隐藏在黑暗中。仅提高黑暗区域的亮度将不可避免地放大隐藏的退化。这项工作建立了一个简单而有效的点燃黑暗的网络(表示为kinD),它的灵感来自视retinex理论,将图像分解成两个部分。一个组件(照明)负责光的调节,而另一个组件(反射率)负责退化去除。网络是在不同曝光条件下拍摄的成对图像进行训练的。可以抵抗严重的视觉缺陷,并且用户可以任意调节光线的亮度。

介绍

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

                                                图1 不同光照条件下的自然图像

        第一种情况是极低的光。严重的噪音和颜色失真隐藏在黑暗中。通过简单地放大图像的强度,退化就会显示在右上角。第二张照片是在日落时拍摄的(微弱的环境光),大多数物体都背光。中午对着光源(太阳)成像也很难摆脱像第二种情况那样的问题,尽管周围的光线更强,场景更清晰可见。最后两张照片中那些相对明亮的区域直接放大会导致饱和。

        基于深度学习的方法在去噪、超分辨率等数值底层视觉任务中表现优异,但其中大部分都需要训练数据包含地面实况。对于特定问题,比如低光图像增强,虽然可以确定光强的大小顺序,但是不存在ground-truth真实数据。从用户的角度来看,不同的人/需求所喜欢的光照等级可能是多种多样的。

        文中总结了低光图像增强的挑战如下:

        1.如何从单个图像中有效地估计出光照分量,并灵活地调整光照?

        2.如何在照亮黑暗区域后去除之前隐藏在黑暗中的噪声和颜色失真等退化?

        3.如何训练一个模型,在没有明确的Ground truth条件下,只看两个/几个不同的例子情况下增强低光图像?

一个理想的弱光图像增强算法应该能够有效的去除隐藏在黑暗中的退化并灵活的调整曝光条件。、

        论文主要贡献:

        1.受Retinex理论的启发,该网络将图像分解为反射率和照明两部分。

        2.该网络使用在不同光/曝光条件下捕获的成对图像进行训练,而不是使用任何地面真实反射率和照明信息。

        3.模型提供了一个映射功能,可以根据用户的不同需求灵活地调整光线的等级。可有效地去除通过亮暗区域放大的视觉缺陷。

已有方法回顾

普通方法

1.对于全局光线较弱的图像,可以通过直接放大亮度来增强其可视性。但是噪声和颜色失真会沿着细节显示出来。对于包含明亮区域的图像,很容易导致(部分)饱和/过度曝光。

2.以直方图均衡化及其后续为代表的技术提高图像的对比度。

3.伽马校正(GC):以非线性方式在每个像素上单独执行,可以提高亮度但没考虑相邻像素的关系。

(几乎不考虑真实的光照因素,使增强的结果在视觉上很不稳定与真实场景不一致)

基于亮度的方法

1.基于Retinex理论的SSR,MSR方法,受限于生成最终结果的,方式输出看起来不自然,在某些地方过度增强。

2.NPE:同时增强对比度,保持照度的自然。

3.SRIE加权变分模型:同时进行反射率和光照估计,控制光照形成目标图像。可抑制噪声但处理颜色失真和较大噪声方面不足。

基于深度学习的方法

1.LLNet(Pattern Recognition 2017):构建了一个深度网络,作为同时进行对比度增强和去噪的模块。

2.MSR-net(arXiv 2017):认为多尺度retinex相当于具有不同高斯卷积核的前馈卷积神经网络 构建了卷积神经网络来学习暗图像和亮图像之间的端到端映射。

3.RetinexNet(BMVC2018):它集成了图像分解和光照映射,反射去噪,照明增强。没有考虑噪声对不同光照区域的影响。

4.SID(CVPR2018):基于全卷积网络端到端训练的低光图像处理管道(SID),可以同时处理噪声和颜色失真。然而,这项工作是针对raw格式的数据的,限制了其适用的场景。若修改网络以接受JPEG格式的数据,性能会显著下降。

基于图像去噪的方法


1.基于自然图像的特定先验(局部相似性,分段平滑性,信号稀疏等)BM3D,WNNM。

2.基于DL的去噪:SSDA-堆叠稀疏自编码器,DnCNN-残差学习和批量归一化

(没有考虑到光照增强图像的不同区域承载不同级别的噪声)

提出的方法

        KinD Network分为三部分:(1)图像分解网络:Layer Decomposition Net(2)反射分量纠正网络:Reflectance Restoration Net(3)光照分量纠正网络:Illumination Adjustment Net。整个网络架构如下图所示。

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

以暗光/正常光照图像对作为训练样本,Layer Decomposition Net对其依次进行分解,得到光照分量和反射分量。再通过Reflectance Restoration Net和Illumination Adjustment Net得到�~���和和�~���。 

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

 文章来源地址https://www.toymoban.com/news/detail-753142.html

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

2.1 Layer Decomposition Net

        Layer Decomposition Net有两个分支,一个分支用于预测反射分量,另一个分支用于预测光照分量,反射分量分支以五层Unet网络为主要网络结构,后接一个卷积层和Sigmoid层。光照分量分支由三个卷积层构成,其中还利用了反射分量分支中的特征图,具体细节可参考论文。

Layer Decomposition Net:

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

2.2 Reflectance Restoration Net

        低光照图像的反射分量有更多的退化分量,所以这里使用高光照图反射分量作为真值约束训练;同时反射分量的分布和光照分量也有关系,所以这里将光照分量的信息也嵌入到该网络里。网络预测得到的纠正后反射分量为;Reflectance Restoration Net的Loss为:

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

2.3 Illumination Adjustment Net

        网络比较轻量化,由三个卷积层组成。光照分量的纠正与反射分量纠正类似,这里同样使用高光照图光照分量作为真值约束训练,网络预测得到的纠正后反射分量;Illumination Adjustment Net的Loss为:

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

实验结果

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》,视频&图像增强,论文阅读,深度学习,论文阅读,人工智能,计算机视觉,深度学习

总结

        基于深度学习的图像暗光增强就是以Retinex理论为基础,用卷积神经网络去分解图像S,得到光照分量I和反射分量R,这也是相当于在深度学习中融入了图像增强的先验知识。最近一些更新的,效果更好的论文大多也都是围绕如何更好的分解图像,生成质量更好的光照分量和反射分量来进行。也有一些人通过GAN直接以图像生成的方式来进行图像增强。

 

到了这里,关于论文阅读之《Kindling the Darkness: A Practical Low-light Image Enhancer》的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 低照度增强--论文阅读【《Toward Fast, Flexible, and Robust Low-Light Image Enhancement》】

    介绍一篇最近看的低照度增强方面的论文——自校准照明,文中所给的方法取得了非常不错的效果,值得我们去学习和思考。 论文名称 :Toward Fast, Flexible, and Robust Low-Light Image Enhancement(实现快速、灵活和稳健的低光照图像增强) 论文信息 :由大连理工大学2022年4月发表在

    2024年02月06日
    浏览(55)
  • Progressive Dual-Branch Network for Low-Light Image Enhancement 论文阅读笔记

    这是22年中科院2区期刊的一篇有监督暗图增强的论文 网络结构如下图所示: ARM模块如下图所示: CAB模块如下图所示: LKA模块其实就是放进去了一些大卷积核: AFB模块如下图所示: 这些网络结构没什么特别的,连来连去搞那么复杂没什么意思,最终预测的结果是两个支路的

    2024年02月16日
    浏览(54)
  • Low-Light Image Enhancement via Stage-Transformer-Guided Network 论文阅读笔记

    这是TCSVT 2023年的一篇暗图增强的论文 文章的核心思想是,暗图有多种降质因素,单一stage的model难以实现多降质因素的去除,因此需要一个multi-stage的model,文章中设置了4个stage。同时提出了用预设query向量来代表不同的降质因素,对原图提取的key 和value进行注意力的方法。

    2024年02月16日
    浏览(49)
  • Low-Light Image Enhancement via Self-Reinforced Retinex Projection Model 论文阅读笔记

    这是马龙博士2022年在TMM期刊发表的基于改进的retinex方法去做暗图增强(非深度学习)的一篇论文 文章用一张图展示了其动机,第一行是估计的亮度层,第二列是通常的retinex方法会对估计的亮度层进行RTV约束优化,从而产生平滑的亮度层,然后原图除以亮度层产生照度层作为

    2024年02月16日
    浏览(48)
  • 论文阅读——《Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement》

    本文试图从原理和代码简单介绍低照度增强领域中比较新的一篇论文——Retinexformer,其效果不错,刷新了十三大暗光增强效果榜单。 ❗ 论文名称 :Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement 👀 论文信息 :由清华大学联合维尔兹堡大学和苏黎世联邦理工

    2024年01月18日
    浏览(51)
  • 【论文阅读】The Design of a Practical System for Fault-Tolerant Virtual Machines

    为了更有效的做论文阅读笔记,之后都打算将每篇论文笔记的内容控制在较少的字数范围内,毕竟原论文摆在那里,将其翻译照抄过来也没什么意思,将论文读薄才是最重要的。( •̀ ω •́ )✧ \\\"The Design of a Practical System for Fault-Tolerant Virtual Machines\\\"是MIT6.824推荐阅读的论文之一

    2024年02月03日
    浏览(52)
  • 论文详读:Beyond Brightening Low-light Images (Kind++)

    文章地址:Beyond Brightening Low-light Images (tju.edu.cn) github:GitHub - zhangyhuaee/KinD_plus: Beyond Brightening Low-light Images 目录 一、简介 二、方法 网络整体结构: 分解网络 网络结构 损失函数: 总损失 反射网络 网络结构 损失函数 反射图的调整 光照网络 网络结构和损失函数 与伽马变化

    2024年02月04日
    浏览(44)
  • Practical Memory Leak Detection using Guarded Value-Flow Analysis 论文阅读

    本文于 2007 年投稿于 ACM-SIGPLAN 会议 1 。 指针在代码编写过程中可能出现以下两种问题: 存在一条执行路径,指针未成功释放(内存泄漏),如下面代码中注释部分所表明的: 存在一条执行路径,指针被重复释放(未定义行为),如 free 一个空指针。 最笨拙的方法是枚举每

    2024年02月08日
    浏览(47)
  • LIME: Low-light Image Enhancement viaIllumination Map Estimation

    当人们在低光条件下拍摄图像时,图像通常会受到低能见度的影响。除了降低图像的视觉美感外,这种不良的质量还可能显著降低许多主要为高质量输入而设计的计算机视觉和多媒体算法的性能。在本文中,我们提出了一种简单而有效的微光图像增强(LIME)方法。更具体地说,

    2024年02月05日
    浏览(42)
  • [论文阅读] Explicit Visual Prompting for Low-Level Structure Segmentations

    [论文地址] [代码] [CVPR 23] Abstract 我们考虑了检测图像中低层次结构的通用问题,其中包括分割被操纵的部分,识别失焦像素,分离阴影区域,以及检测隐藏的物体。每个问题通常都有一个特定领域的解决方案,我们表明,一个统一的方法在所有这些问题上都表现良好。我们从

    2024年02月15日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包