图像处理01 小波变换

这篇具有很好参考价值的文章主要介绍了图像处理01 小波变换。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.为什么需要离散小波变换

连续小波分解,通过改变分析窗口大小,在时域上移动窗口和基信号相乘,最后在全时域上整合。通过离散化连续小波分解可以得到伪离散小波分解, 这种离散化带有大量冗余信息且计算成本较高。

小波变换的公式如下:

​ ​​
图像处理01 小波变换,图像处理,图像处理,人工智能
图像处理01 小波变换,图像处理,图像处理,人工智能
图像处理01 小波变换,图像处理,图像处理,人工智能

​​

通过下面步骤即可得到不同尺度下的小波变换。

二.离散小波变换

我们将小波的尺度和平移参数以2的指数幂的形式进行变换,我们可以得到一串不同的小波。这些子小波的尺度参数以2的j次方的形式增长。当使用这一系列的子小波,对一个连续函数进行离散分析时,我们所获得的是一组小波分析的系数,这个分析过程称为**小波系列分解**。

而高尺度小波代表着低频信息,小尺度的小波代表着高频信息。

因此如下图所示,不同尺度的小波来实现频率上的覆盖。

图像处理01 小波变换,图像处理,图像处理,人工智能

因此我们可以理解,为什么离散小波变换可以等效为通过一个高通和低通滤波器。

图像处理01 小波变换,图像处理,图像处理,人工智能

更直观的可以用下面的图片来表示。

图像处理01 小波变换,图像处理,图像处理,人工智能

三.直观意义

当我们懂了上面的内容,再来看看小波变换的过程,是否能有了以下体会。

小波分解的多尺度可以类比为我们使用不同的“放大镜”去观察一个物体。想象一下你手里有一张非常复杂的画,画面上有大的物体,如山脉、树木,但也有非常细小的细节,如叶子上的纹理或昆虫的触角。
粗尺度(低分辨率) :当你使用低倍的放大镜(或者站得很远)去看这幅画时,你可以看到大的物体,如山脉和树木,但可能看不到细小的纹理或昆虫。在小波分解中,这就像我们查看信号的低频部分,捕获其主要的、宽泛的特征。
细尺度(高分辨率) :现在,如果你换一个高倍的放大镜(或者走近一些)去看同一幅画,你可能会失去对整体的感知,但可以清晰地看到叶子上的纹理或昆虫的触角等细节。在小波分解中,这就像我们查看信号的高频部分,捕获其细节和快速的变化。
小波分解的美妙之处在于,它同时提供了多个尺度的视角,让我们既可以看到信号的整体特征,又可以看到其细节。这就像我们可以同时拥有多个不同倍率的放大镜,让我们在需要的时候选择合适的一个来观察画面。

四.小波变换实现分解和重构。

如图a是带有噪声的信号,经过4层小波变换得到的变换后的先后如下。

图像处理01 小波变换,图像处理,图像处理,人工智能
代码如下所示:

%% 1.生成仿真信号
Fs = 1000; % 采样频率
t = 0:1/Fs:1-1/Fs; % 时间向量
% 创建一个合成信号:包含不同频率的正弦波、趋势和噪声
signal = cos(2*pi*10*t) + 0.5*sin(2*pi*50*t) + t + 0.5*randn(size(t));
figure('color','white')
subplot(3,2,1)
%%  2.绘制DWT分解图
subplot(6,1,1);
plot(signal)
ylabel(['a']);
[C,L] = wavedec(signal,4,waveletType);
for i=1:4
    a = wrcoef('a',C,L,waveletType,5-i);
    subplot(6,1,i+1);
    plot(a);
    ylabel(['a',num2str(5-i)]);
end

文章来源地址https://www.toymoban.com/news/detail-753447.html

到了这里,关于图像处理01 小波变换的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能|深度学习——基于数字图像处理和深度学习的车牌定位

    车牌识别Vehicle License Plate Recognition VLPR) 是从一张或一系列数字图片中自动定位车牌区域并提取车牌信息的图像识别技术。车牌识别 以数字图像处理、模式识别、计算机视觉等技术为基础,是现代智能交通系统的重要组成部分,广泛应用于日常生活中,如 停车场收 费管理,车

    2024年02月21日
    浏览(45)
  • 人工智能在图像处理中的应用:智能摄像头与视觉识别

    人工智能(Artificial Intelligence, AI)是一种计算机科学的分支,旨在模拟人类智能的行为和能力。其中,图像处理和视觉识别是人工智能领域中的重要应用领域。随着计算能力的提高和数据量的增加,人工智能在图像处理和视觉识别方面取得了显著的进展。 智能摄像头是一种具有

    2024年02月20日
    浏览(61)
  • 基于Springboot+百度AI人工智能图像图片智能处理系统设计与实现

    基于Springboot+百度AI人工智能图像图片智能处理系统设计与实现  博主介绍: 《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,

    2024年02月05日
    浏览(61)
  • 构建基于AWSLambda的人工智能应用:语音识别、图像识别和自然语言处理

    作者:禅与计算机程序设计艺术 在人工智能领域,用大数据、机器学习等方法来解决复杂的问题,已经成为越来越多企业和开发者关注的问题。但是,如何把这些方法落地到生产环境中,仍然是一个难题。 随着云计算平台的广泛普及,AWS Lambda作为一项服务正在成为各个公司

    2024年02月09日
    浏览(72)
  • 小波图像处理

    前置知识: (1)wavedec2函数: 格式:[C,S]=wavedec2(X,N,‘wname’) 对图像X用wname小波基函数实现N层分解, wname取值:‘Haar’是哈尔小波,‘sym4’是Symlet小波。 输出为C,S,C为各层分解系数,S为各层分解系数长度,也就是大小。 (2)appcoef2函数: 格式:A = appcoef2(C,S,‘wname’,N) 提取小

    2024年02月06日
    浏览(46)
  • 【SCI征稿】3个月左右录用!计算机信息技术等领域均可,如机器学习、遥感技术、人工智能、物联网、人工神经网络、数据挖掘、图像处理

    计算机技术类SCIEEI 【期刊简介】IF:1.0-2.0,JCR4区,中科院4区 【检索情况】SCIEEI 双检,正刊 【参考周期】期刊部系统内提交,录用周期3个月左右,走完期刊部流程上线 【征稿领域】 计算机信息技术在土地变化检测中的应用 包括但不限于以下主题: ● 利用基于机器学习的

    2024年02月10日
    浏览(61)
  • 基于Java(SpringBoot框架)毕业设计作品成品(33)AI人工智能毕设AI常用数字图像图片特效处理系统设计与实现

    博主介绍: 《Vue.js入门与商城开发实战》《微信小程序商城开发》图书作者,CSDN博客专家,在线教育专家,CSDN钻石讲师;专注大学生毕业设计教育和辅导。 所有项目都配有从入门到精通的基础知识视频课程,免费 项目配有对应开发文档、开题报告、任务书、PPT、论文模版

    2024年02月08日
    浏览(45)
  • 数字信号与图像处理实验三:图像处理基础与图像变换

    ​ 通过本实验加深对数字图像的理解,熟悉MATLAB中的有关函数;应用DCT对图像进行变换;熟悉图像常见的统计指标,实现图像几何变换的基本方法。 ​ 选择两幅图像,读入图像并显示,同时使用Matlab计算图像的大小,灰度平均值、协方差矩阵、灰度标准差和相关系数。 DC

    2024年02月04日
    浏览(57)
  • 数字图像处理实验四--图像变换

    (图像变换) 实验内容: 对图像lena、cameraman和face进行傅里叶变换,观察图像能量在频谱图中的分布情况。 利用Matlab生成下列图像,并对其进行旋转30度、90度和120度,然后对他们分别进行傅里叶变换。 对图像lena、cameraman和face用DCT变换进行图像压缩,舍掉的变换系数分别小

    2024年04月14日
    浏览(64)
  • OpenCV(图像处理)-基于Python-图像的基本变换-平移-翻转-仿射变换-透视变换

    为了方便开发人员的操作,OpenCV还提供了一些图像变换的API,本篇文章讲简单介绍各种API的使用,并附上一些样例。 图像缩放函数,用于把图像按指定的尺寸放大或缩小。 dst = cv2.resize(src, dsize, fx, fy, interpolation) dst = 生成的目的图像 src:需要变换的原图像 disize:(x, y)需要

    2024年02月08日
    浏览(63)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包