Python中Pandas库提供的函数——pd.DataFrame的基本用法

这篇具有很好参考价值的文章主要介绍了Python中Pandas库提供的函数——pd.DataFrame的基本用法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、DataFrame 的基本概念

pd.DataFrame是 Pandas 库中的一个类,用于创建和操作数据框(DataFrame)。DataFrame 是 Pandas 的核心数据结构,用于以表格形式和处理数据,类似提供电子表格或数据库表格。类了创建pd.DataFrame数据框、访问数据、进行数据操作和分析的方法和属性。

二、DataFrame 的重要特点

  1. 表格形式:DataFrame是一个二维表格,其中包含了多行和多列的数据。每个列可以有不同的数据类型,例如整数、浮点数、字符串等。

  2. 标签:DataFrame的行和列都有标签(Label),行标签称为索引(Index),列标签通常是字段名或特征名。

  3. 数据操作:DataFrame提供了丰富的数据操作方法,包括数据筛选、切片、合并、分组、聚合、排序等。

  4. 数据查看:您可以使用.head()方法来查看DataFrame的前几行数据,以了解数据的结构和内容。

  5. 数据统计:DataFrame提供了.describe()方法,用于生成数据的统计摘要信息,包括均值、标准差、简单、顶点等。

  6. 数据过滤:你可以使用条件表达式来过滤数据,例如选择满足特定条件的行。

  7. 数据可视化:Pandas 与其他数据可视化库(如 Matplotlib 和 Seaborn)结合使用,可以轻松创建各种图表和可视化,以探索和传输数据。

  8. 数据导入和导出:DataFrame可以从各种数据源导入数据,如CSV文件、Excel表格、SQL数据库等,并且可以将数据导出为不同格式的文件。

  9. 数据恢复处理:DataFrame提供了处理数据中的恢复值的方法,如删除恢复值或恢复恢复值。

  10. 数据索引:DataFrame可以使用行索引和列标签来访问特定的数据元素。

  11. 数据转换:您可以对DataFrame进行各种数据转换操作,如数据类型转换、列重命名、数据透视表等。

三、DataFrame 的具体代码操作

 1.创建空的数据框:

import pandas as pd
df = pd.DataFrame()
print(df)
# 运行结果
'''
Empty DataFrame
Columns: []
Index: []
'''

这将创建一个空的数据框,可以在后续添加数据。

2.从创建列表数据框:

import pandas as pd
data = [['Alice', 25], ['Bob', 30], ['Charlie', 35]]
df = pd.DataFrame(data, columns=['Name', 'Age'])
print(df)
# 运行结果
'''
      Name  Age
0    Alice   25
1      Bob   30
2  Charlie   35
'''

这将创建一个包含姓名和年龄列的数据框。

3.从字典创建数据框:

import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
print(df)
# 运行结果
'''
      Name  Age
0    Alice   25
1      Bob   30
2  Charlie   35
'''

这将创建一个与上述示例相同的数据框。

4.访问数据

import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
a = df['Name']  # 获取 'Name' 列的数据
b = df.loc[0]    # 获取第一行的数据
print(a)
print(b)
# 运行结果
'''
0      Alice
1        Bob
2    Charlie
Name: Name, dtype: object
Name    Alice
Age        25
Name: 0, dtype: object
'''

5.数据操作:

import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
a = df['Age'].mean()  # 计算 'Age' 列的平均值
b = df.sort_values(by='Age', ascending=False)  # 按 'Age' 列排序,ascending=True是从小到大,ascending=False是从大到小
print(a)
print(b)
# 运行结果
'''
30.0
      Name  Age
2  Charlie   35
1      Bob   30
0    Alice   25
'''

 6.数据查看:

import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
a = df.head(2)     # 查看前几行数据,df.head()默认为前5行
b = df.tail(2)    # 查看后3行数据
print(a)
print(b)
# 运行结果
'''
    Name  Age
0  Alice   25
1    Bob   30
      Name  Age
1      Bob   30
2  Charlie   35
'''

7.数据统计:

import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
c=df.describe()  # 生成数据的统计摘要信
print(c)
# 运行结果
'''
Age
count   3.0
mean   30.0
std     5.0
min    25.0
25%    27.5
50%    30.0
75%    32.5
max    35.0
'''

这些是一些常见的最有效pd.DataFrame示例,Pandas 提供了丰富的高效方法和功能,使你能够进行数据处理和分析。数据科学、机器学习、统计分析等领域中经常使用 Pandas 数据框来处理和分析数据。文章来源地址https://www.toymoban.com/news/detail-753539.html

到了这里,关于Python中Pandas库提供的函数——pd.DataFrame的基本用法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【python】【pandas】dataframe按照列名给列排序

    输出结果: 在上述代码中,我们首先创建了一个示例DataFrame。然后,我们使用 sort_values() 方法对DataFrame的列进行排序。通过指定 by=df.columns ,我们将按照列名的字母顺序对列进行排序。最后,通过设置 axis=1 参数,我们指定按列进行排序。 执行上述代码后,DataFrame的列将按照

    2024年02月15日
    浏览(49)
  • 【Python】【pandas】打印 DataFrame 的每一列数据类型。

    可以使用 dtypes 属性来打印 DataFrame 的每一列数据类型。 dtypes 属性返回一个 Series,其中包含每个列的名称和对应的数据类型。 以下是打印 DataFrame 每一列数据类型的示例代码: 这将输出一个包含列名和数据类型的 Series。每一行都代表 DataFrame 的一列,列名作为索引,数据类

    2024年02月14日
    浏览(47)
  • 【python】【pandas】读取DataFrame的某一列形成一个列表

    输出结果: 在上述代码中,我们创建了一个示例DataFrame df ,其中包含三列(\\\'A\\\'、\\\'B\\\'、\\\'C\\\'),每列都有一些示例值。 然后,我们使用 df.iloc[:, 1] 来访问DataFrame的第一列。这里的 iloc[:, 1] 表示选择所有行(使用 : ),并选择索引为1的列(即第二列)。 接下来,我们使用 tolist

    2024年02月11日
    浏览(46)
  • 【python】pandas-DataFrame类型数据重命名列表头

    目录 0.环境 1.将DataFrame类型数据某一列重命名 windows + jupyter notebook + python  使用场景: 在处理数据对齐的问题时,两个表格的对齐列名不相同(一个数据集是DataFrame类型,一个数据集是geopandas类型),所以想修改一下DataFrame类型数据的某一列名字,特此记录分享 1)重命名前

    2024年02月14日
    浏览(65)
  • Python 之 Pandas DataFrame 数据类型的简介、创建的列操作

    DataFrame 是 Pandas 的重要数据结构之一,也是在使用 Pandas 进行数据分析过程中最常用的结构之一,可以这么说,掌握了 DataFrame 的用法,你就拥有了学习数据分析的基本能力。 DataFrame 是一个表格型的数据结构,既有行标签(index),又有列标签(columns),它也被称异构数据表

    2024年02月06日
    浏览(40)
  • Python Pandas:DataFrame 一列切分成多列、分隔符切分选字段

    创建一个复杂又简单的数据集 split expand:这个参数直接将分列后的结果转换成 DataFrame drop axis 是指处哪一个轴 columns 是指某一列或者多列 inplaces 是否替换原来的 dataframe

    2024年02月12日
    浏览(67)
  • python学习——pandas库的使用之series及DataFrame创建、查看、切片、运算

    Pandas是基于NumPy的数据分析模块 Pandas纳入了大量库和一些标准的数据模型,提供了高效操作大型数据集所需的工具 Pandas提供了大量能使我们快速便捷处理数据的函数和方法 Pandas的数据结构 Series :带标签的一维数组,与Numpy中的一维array类似。与列表也很相近。 区别是:列表

    2024年02月03日
    浏览(51)
  • python的pandas中如何在dataframe中插入一行或一列数据?

    dataframe类型是如何插入一行或一列数据的呢?这个需求在本文中将会进行讨论。相比较ndarray类型的同样的“数据插入”需求,dataframe的实现方式,则不是很好用。本文以一个dataframe类型变量为例,测试插入一行数据或者一列数据的方式方法。测试环境:win10,python@3.11.0,nu

    2024年02月03日
    浏览(64)
  • Python实用技巧:Pandas--DataFrame--筛选和删除含特定值的行与列

    Python实用技巧:Pandas–DataFrame–筛选和删除含特定值的行与列 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程 👈 希望得到您的订阅和支持~ 💡 创作高质量博文,分享更多关于深度学习、PyT

    2024年04月13日
    浏览(44)
  • pyspark.sql.dataframe.DataFrame 怎么转pandas DataFrame

    pyspark.sql.dataframe.DataFrame 怎么转pandas DataFrame 要将 PySpark 的  pyspark.sql.dataframe.DataFrame  转换为 Pandas DataFrame,可以使用  toPandas()  方法。以下是一个示例: 上面的代码输出 在上述示例中,我们首先使用 PySpark 创建了一个示例 DataFrame  df_spark 。然后,我们使用  toPandas()  方法

    2024年03月20日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包