【概率论与数理统计】二维随机变量:分布函数(联合分布函数、边缘分布函数)、联合概率密度、边缘概率密度、联合分布律、边缘分布律

这篇具有很好参考价值的文章主要介绍了【概率论与数理统计】二维随机变量:分布函数(联合分布函数、边缘分布函数)、联合概率密度、边缘概率密度、联合分布律、边缘分布律。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

直观理解:

联合概率密度 草帽/山峰

边缘概率密度 切一刀的山峰切面

联合分布函数 切两刀山峰体

边缘分布函数 切一刀山峰体

联合分布律边缘分布律 针对离散型随机变量

二维随机变量

二维联合概率密度函数,概率论,概率论

 联合分布函数(切两刀山峰体)

二维联合概率密度函数,概率论,概率论

边缘分布函数 (切一刀山峰体)

 二维联合概率密度函数,概率论,概率论

 【连续型随机变量】联合概率密度函数(草帽/山峰)

二维联合概率密度函数,概率论,概率论

 二维联合概率密度函数,概率论,概率论

【连续型】边缘概率密度函数 (切一刀的山峰切面)

二维联合概率密度函数,概率论,概率论

二维联合概率密度函数,概率论,概率论

 【离散型】联合分布律、联合分布表、边缘分布律、边缘分布表

二维联合概率密度函数,概率论,概率论

 这部分概念比较多,可看:

【概率论与数理统计】一个视频让你明白分布函数,概率密度函数,分布律,联合概率密度,联合分布函数,联合分布律,边缘概率密度,边缘分布函数都是什么意义和概念_哔哩哔哩_bilibili文章来源地址https://www.toymoban.com/news/detail-753578.html

到了这里,关于【概率论与数理统计】二维随机变量:分布函数(联合分布函数、边缘分布函数)、联合概率密度、边缘概率密度、联合分布律、边缘分布律的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 概率论与数理统计:第一章:随机事件及其概率

    ①古典概型求概率 ②几何概型求概率 ③七大公式求概率 ④独立性 (1)随机试验、随机事件、样本空间 1. 随机试验 E 2. 随机事件 A、B、C ① 必然事件 Ω : P ( Ω ) = 1 P(Ω)=1 P ( Ω ) = 1 ② 不可能事件 Ø : P ( Ø ) = 0 P(Ø)=0 P ( Ø ) = 0 3.样本空间 ① 样本点 ω = 基本事件 ② 样本空间

    2024年02月14日
    浏览(51)
  • 概率论与数理统计---随机变量的分布

    随机变量 随机变量就是随机事件的数值体现。 例如投色子记录色子的点数,记录的点数其实就是一个随机变量,他是这个点数出现的数值体现。 注意: 随机变量X = X(e) , 是一个单实值函数,每个随机事件的结果只能对应一个随机变量。 X(e)体现的是对随机事件的描述,本质

    2024年02月13日
    浏览(46)
  • 概率论与数理统计————3.随机变量及其分布

    设E是一个随机试验,S为样本空间,样本空间的任意样本点e可以通过特定的对应法则X,使得每个样本点都有与之对应的数对应,则称 X=X(e)为随机变量 分布函数: 设X为随机变量,x是任意实数,则事件{Xx}为随机变量X的分布函数,记为F(x) 即: F(x)=P(Xx) (1)几何意

    2024年01月18日
    浏览(40)
  • 【考研数学】概率论与数理统计 | 第一章——随机事件与概率(1)

    若一个试验满足如下条件: 在相同的条件下该试验可重复进行; 试验的结果是多样的且所有可能的结果在试验前都是确定的; 某次试验之前不确定具体发生的结果, 这样的试验称为随机试验,简称试验,一般用字母 E E E 表示。 设 E E E 为随机试验,随机试验 E E E 的 所有

    2024年02月12日
    浏览(53)
  • 概率论与数理统计:第四章:随机变量的数字特征

    一维随机变量的数字特征:数学期望、方差 二维随机变量的数字特征:协方差、相关系数 (1)数学期望的概念 数学期望,又称均值 1.离散型 ①一维离散型随机变量X的数学期望: E X EX EX 若离散型随机变量X的级数 ∑ k = 1 ∞ x k p k sumlimits_{k=1}^∞x_kp_k k = 1 ∑ ∞ ​ x k ​ p k ​

    2024年02月12日
    浏览(41)
  • 概率论与数理统计-第4章 随机变量的数字特征

    一、离散型随机变量的数学期望 定义1设离散型随机变量X的概率分布为 P{X=x i }=p i ,i=1,2,…,如果级数 绝对收敛 ,则定义X的 数学期望 (又称 均值 )为 二、连续型随机变量的数学期望 定义2设X是连续型随机变量,其密度函数为f(x).如果f -∞ +∞ xf(x)dx 绝对收敛 ,则定义X的 数

    2024年02月05日
    浏览(41)
  • 【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)

    承接上文,继续介绍概率论与数理统计第一章的内容。 P ( A − B ) = P ( A B ‾ ) = P ( A ) − P ( A B ) . P(A-B)=P(A overline{B} )=P(A)-P(AB). P ( A − B ) = P ( A B ) = P ( A ) − P ( A B ) . 证明: A = ( A − B ) + A B A=(A-B)+AB A = ( A − B ) + A B ,且 A − B A-B A − B 与 A B AB A B 互斥,根据概率的有限可加

    2024年02月12日
    浏览(51)
  • 概率论与数理统计:第二、三章:一维~n维随机变量及其分布

    1.随机变量 ①X=X(ω) ②一般用大写字母表示 常见的两类随机变量——离散型随机变量、连续型随机变量 2. 分布函数 F ( x ) F(x) F ( x ) (1)定义 1.定义: 称函数 F ( x ) = P { X ≤ x }   ( − ∞ x + ∞ ) F(x)=P{ X≤x} (-∞x+∞) F ( x ) = P { X ≤ x }   ( − ∞ x + ∞ ) 为随机变量X的分布函数,

    2024年02月13日
    浏览(46)
  • 概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    设随机变量X的所有可能取值为0与1两个值,其分布律为 若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p) 0-1分布的分布律利用表格法表示为: X 0 1 P 1-P P 0-1分布的数学期望 E(X) = 0 * (1 - p) + 1 * p = p 二项分布的分布律如下所示: 其中P是事件在一次试验

    2024年02月05日
    浏览(39)
  • 【考研数学】概率论与数理统计 —— 第二章 | 一维随机变量及其分布(1,基本概念与随机变量常见类型)

    暑假接近尾声了,争取赶一点概率论部分的进度。 设随机试验 E E E 的样本空间为 Ω Omega Ω , X X X 为定义于样本空间 Ω Omega Ω 上的函数,对于任意 w ∈ Ω w in Omega w ∈ Ω ,总存在唯一确定的 X ( w ) X(w) X ( w ) 与之对应,称 X ( w ) X(w) X ( w ) 为随机变量,一般记为 X X X 。 随机

    2024年02月11日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包