【论文阅读笔记】序列数据的数据增强方法综述

这篇具有很好参考价值的文章主要介绍了【论文阅读笔记】序列数据的数据增强方法综述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【论文阅读笔记】序列数据的数据增强方法综述

摘要

 这篇论文探讨了在深度学习模型中由于对精度的要求不断提高导致模型框架结构变得更加复杂和深层的趋势。随着模型参数量的增加,训练模型需要更多的数据,但人工标注数据的成本高昂,且由于客观原因,获取特定领域的数据可能变得困难。为了缓解数据不足的问题,作者提出了数据增强的概念,通过人为生成新的数据来增加数据量。

 论文指出,数据增强方法在计算机视觉领域取得了显著的成果,并探讨了这些方法是否可以应用在序列数据上。除了在时间域进行增强的方法(如翻转、裁剪)外,论文还描述了在频率域实现数据增强的方法。此外,除了基于经验或知识设计的方法,还详细论述了一系列基于生成对抗网络(GAN)的通过机器学习模型自动生成数据的方法。

 论文对应用在自然语言文本、音频信号和时间序列等多种序列数据上的数据增强方法进行了介绍,并涉及了它们在医疗诊断、情绪判断等问题上的表现。尽管这些数据类型不同,论文总结了应用在它们上的数据增强方法背后的相似设计思路。最后,论文以这一思路为线索,梳理了应用在各类序列数据类型上的多种数据增强方法,并进行了一定的讨论和展望

Introduction

  • 线下增强:训练之前,将整个数据集进行整体操作,再把增强之后的数据集喂入模型中
  • 线上增强:更为常用的是线上增强(online augmentation),对即将送入到模型的每一批(batch)数据执行转换,不必显式地占用磁盘空间

基础方法

  • 如变换取值维度的翻转、缩放(scaling)或 变 换 时 间 维 度 的 窗 口 规 整

  • 窗口切片:滑动窗口在时序数据不断采样,切片需要随机性

  • 添加噪声:对于数值型序列数据,可以对每一个取值随机地添加一定的噪声来生成新的序列[4,8],且不影响序列的整体性质和标签信息

【论文阅读笔记】序列数据的数据增强方法综述,# 论文阅读笔记,论文阅读,笔记

  • 通过对时间域数据进行傅里叶变换得到频率域的振幅谱和相位谱
  • 在振幅谱上随机选择区间,用基于原始振幅的统计参数重新生成一段信号替换,如图2[9](b)所示;在相位谱上随机选择区间并添加白噪声

【论文阅读笔记】序列数据的数据增强方法综述,# 论文阅读笔记,论文阅读,笔记

频率域变换

  • 首先对时序数据进行短时傅里叶变换,得到时序关系的谱特征,
  • 再在普特征上面使用两种数据增强的方法,一种是对每一个属性做局部平均,将局部平均序列接在原始序列的后面
  • 二是打乱顺序,以增加数据的方差,这种方法会使得数据尺寸发生变化
  • 由于STFT变换得到的普特征仍然是具有时序关系,这种数据增强方法也被认为是时间-频率域进行的
  • AAFT:赋值调整傅里叶变换可以实现只在频率域进行数据增强

基于分解或混合的方法


STL方法的应用:

使用STLSeasonal and Trend Decomposition using Loess)方法将时间序列分解为基础项、趋势项、季节项和残差项。
基础项、趋势项和季节项被认为是确定性部分,包含了原始序列的绝大部分信息。
Kegel等人基于相似矩阵和最近邻搜索等方法为不同成分分配权重,以组合新的时间序列。
随机的残差项通过重新建模生成,利用其分布特征和自相关特征。

Bergmeir等人的简单方法:

对时间序列信号进行分解,得到趋势项和季节项之外的剩余项。
对剩余项进行有放回的重复采样(bootstrap),生成新的剩余项序列,然后与前两者混合成新的时间序列。
在M3数据集上的实验证明,这种方法在月频数据上对预测精度的提升较为显著,但在长度较短的序列数据上表现一般。



  • 第一种方法以数据集为单位产生新的序列,而第二种方法以序列为单位产生新的序列。

  • 第一种方法更能利用数据集整体的分布特征进行数据增强,避免可能发生在第二种方法中对不典型序列进行增强的情况。

异常标签扩展

  • 对异常检测任务的数据增强方法,称为异常标签扩展(label expansion)。该方法旨在解决类别不平衡的问题,尤其是为了增加数量较少的异常标签。
    【论文阅读笔记】序列数据的数据增强方法综述,# 论文阅读笔记,论文阅读,笔记

基于深度学习的序列数据增强方法

  • 使用生成对抗网络生成数据

  • GAN由生成器和判别器组成

  • 判别器判断样本是原始数据集的还是模型生成的,而生成器尽可能地最大化判别器判断错误的概率,整个模型的优化是一个二元极大极小博弈

【论文阅读笔记】序列数据的数据增强方法综述,# 论文阅读笔记,论文阅读,笔记

总结

【论文阅读笔记】序列数据的数据增强方法综述,# 论文阅读笔记,论文阅读,笔记文章来源地址https://www.toymoban.com/news/detail-753923.html

到了这里,关于【论文阅读笔记】序列数据的数据增强方法综述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 无人驾驶汽车运动规划方法研究综述 - 阅读笔记

    本文旨在对自己的研究方向做一些学习记录,方便日后回顾,详细论文细节见:无人驾驶汽车运动规划方法研究综述 1 摘要 文章从 环境建模 和 路径搜索 两个方面对现有的路径规划算法进行阐述(算法原理、应用现状、优缺点)。 2 引言 一般基于图的搜索算法产生的基础路

    2024年01月16日
    浏览(91)
  • 论文笔记--网络重要节点排序方法综述(概念性知识点)

    任晓龙, 吕琳媛 度中心性:节点的直接邻居数目 半局部中心性:节点四层邻居的信息 k-shell分解:度中心性的扩展,根据节点在网络中的位置来定义,越在核心的节点越重要 1.1度中心性(DC) 节点的度分为入度和出度;权重为与节点相连的边的权重之和 优缺点: 优点:简单

    2024年02月05日
    浏览(35)
  • 【论文笔记】数据增强系列.1

    本文介绍简单数据增强、好处以及常见的增强方式,也介绍几篇关于数据增强的工作: CutMix(ICCV2019),ContrastMask(CVPR2022),BCP(CVPR2023)。 什么是数据增强? 数据增强是深度学习中的一种技术,它通过从现有数据生成新的训练数据来扩展原数据集。数据增强工具通过操作

    2024年02月10日
    浏览(47)
  • 论文阅读---联邦忘却学习研究综述

    论文:联邦忘却学习研究综述 federated unlearning-联邦忘却学习 摘要 联邦忘却学习撤销用户数据对联邦学习模型的训练更新,可以进一步保护联邦学习用户的数据安全。 联邦忘却学习在联邦学习框架的基础上,通过迭代训练,直接删除等方式,撤销用户本地局部模型对全局模型

    2024年03月12日
    浏览(110)
  • 【论文笔记】最近看的时空数据挖掘综述整理8.27

    Deep Learning for Spatio-Temporal Data Mining: A Survey 被引用次数:392 [Submitted on 11 Jun 2019 ( v1 ), last revised 24 Jun 2019 (this version, v2)] 主要内容: 该论文是一篇关于深度学习在时空数据挖掘中的应用的综述。论文首先介绍了时空数据挖掘的背景和意义,然后详细介绍了深度学习在时空数据

    2024年02月11日
    浏览(45)
  • 论文笔记:一分类及其在大数据中的潜在应用综述

    论文:A literature review on one‑class classification and its potential applications in big data 发表:Journal of Big Data 在严重不平衡的数据集中,使用传统的二分类或多分类通常会导致对具有大量实例的类的偏见。在这种情况下,对少数类实例的建模和检测是非常困难的。一分类(OCC)是一种检测

    2024年02月09日
    浏览(42)
  • 【论文阅读】NIDS对抗性机器学习综述

    题目:Adversarial Machine Learning for Network Intrusion Detection Systems: A Comprehensive Survey 期刊:IEEE Communications Surveys Tutorials SCI 工程技术 1 区 基于网络的入侵检测系统(NIDS)是抵御危及数据、系统和网络安全的网络攻击的一线防御系统。近年来,深度神经网络 (DNN) 因其检测准确性高

    2024年03月23日
    浏览(53)
  • 【论文阅读】SAM医学图像分割近期工作综述

    How Segment Anything Model (SAM) Boost Medical Image Segmentation? 论文:[2305.03678] How Segment Anything Model (SAM) Boost Medical Image Segmentation? (arxiv.org) 仓库:https://github.com/yichizhang98/sam4mis 摘要: 在这项工作中,我们总结了近期工作中以扩展 SAM 医疗图像分割的任务,包括经验基准和方法的调整,并

    2024年02月11日
    浏览(43)
  • 【论文阅读】自动作文评分系统:一份系统的文献综述

    许多研究者在过去的几十年间都在致力于自动作文评分和简答题打分,但是通过像与提示之间的内容的相关性、思想的发展性、文章内聚力、文章连贯性等来评估一篇文章,到目前为止都是一项挑战。 很少的研究者聚焦于基于内容的评分,他们中的大多数都强调基于风格的评

    2023年04月08日
    浏览(47)
  • 小样本图像目标检测研究综述——张振伟论文阅读

    目前,小样本图像目标检测方法多基于经典的俩阶段目标检测算法Faster R-CNN作为主干网络,当然也有将YOLO,SSD一阶段目标检测算法作为主干网络的。 检测过程中不仅需要提取分类任务所关注的高层语义信息,还要获取低层级像素级信息实现目标的定位。 1.2.1 基于度量学习方

    2024年02月13日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包