布隆过滤器及其在Java中的实际应用

这篇具有很好参考价值的文章主要介绍了布隆过滤器及其在Java中的实际应用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

布隆过滤器一直是面试中的重点,本篇文章将深入探讨Java中的布隆过滤器的底层思想,包括它的工作原理、优缺点等。同时,我们将结合一个小实际案例,来给大家展示布隆过滤器在解决实际问题中的应用。

布隆过滤器简单介绍

在数据处理领域,我们经常需要判断一个元素是否在一个集合中。传统的数据结构如哈希表、树等可以提供精确的答案,但是在某些场景下,我们可能更关心查询效率而非精确性。布隆过滤器就是这样一种数据结构,它能在常数时间内判断一个元素是否可能在一个集合中,尽管有一定的误报率,但他的空间和时间效率远超过其他数据结构

布隆过滤器的底层思想

布隆过滤器主要由两个部分组成:一个长度为m的位数组和k个独立的哈希函数。当插入一个元素时,这个元素会被k个哈希函数映射到位数组的k个位置,并将这些位置设置为1。当查询一个元素时,同样使用这k个哈希函数映射到位数组的k个位置,如果这些位置中有任何一个为0,那么这个元素肯定不在集合中;如果所有位置都为1,那么这个元素可能在集合中。

布隆过滤器及其在Java中的实际应用,秋招总结&小白入坑Java,java,开发语言,redis

布隆过滤器的优点在于它的查询效率特别高,是常数时间,而且空间效率也高于其他数据结构

但是,它也存在一定的误报率,可能会将不在集合中的元素误判为在集合中。这种误报率可以通过增加位数组的长度或增加哈希函数的数量来降低,但是无法完全消除。

布隆过滤器简单应用

以之前做过的课设项目为例。我们可以使用Google的Guava库来实现布隆过滤器。

在此之前我们在项目中引入了Guava库的依赖。

然后,我们可以创建一个布隆过滤器实例,并且添加一些元素:

BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charset.forName("UTF-8")), expectedInsertions);
bloomFilter.put("element1");
bloomFilter.put("element2");

我们使用Guava库创建了一个布隆过滤器实例,而且指定了预期的插入元素数量。然后,我们添加了一些元素到布隆过滤器中。

布隆过滤器结合Redis应用

在实际项目中,我们可以使用布隆过滤器来解决一些实际问题。举一个经常使用到的栗子:

我们有一个Web应用,需要防止恶意用户通过大量的不存在的用户ID来查询用户信息,从而造成缓存穿透。那么我们就可以使用布隆过滤器来解决这个问题。

首先,我们需要在Redis中创建一个布隆过滤器来存储所有已注册的用户ID。当用户注册时,我们将用户ID添加到布隆过滤器中;当用户查询时,我们先检查布隆过滤器,如果用户ID不在布隆过滤器中,那么直接返回“用户不存在”;否则,我们继续查询数据库或缓存以获取用户信息。

我们可以使用Jedis库来操作Redis。代码如下:

Jedis jedis = new Jedis("localhost");
// 创建一个布隆过滤器并设置误报率
String key = "userIdsBloomFilter";
int expectedInsertions = 1000000; // 预计插入的元素数量
double falsePositiveProbability = 0.01; // 误报率
jedis.bfCreate(key, expectedInsertions, falsePositiveProbability);
// 添加已注册的用户ID到布隆过滤器中
jedis.bfAdd(key, "userId1");
jedis.bfAdd(key, "userId2");
...
// 查询用户ID是否在布隆过滤器中
boolean exists = jedis.bfExists(key, "userIdToQuery");
if (!exists) {
// 用户ID不存在,直接返回或进行其他处理
} else {
// 用户ID可能存在,继续查询数据库或缓存以获取用户信息
}

我们使用Jedis库创建了一个Redis客户端实例,并且在Redis中创建了一个布隆过滤器来存储已注册的用户ID。

然后,我们添加了一些已注册的用户ID到布隆过滤器中。当查询一个用户ID时,我们先检查这个用户ID是否在布隆过滤器中。如果不在,那么我们可以直接返回“用户不存在”;否则,我们继续查询数据库或缓存以获取用户信息。这样可以有效防止缓存穿透问题。

文章到这里就先结束了,感谢大佬的观看。希望读者通过本文的学习和以及实践可以更好地理解和应用这一高效数据结构来解决实际问题!

布隆过滤器及其在Java中的实际应用,秋招总结&amp;小白入坑Java,java,开发语言,redis文章来源地址https://www.toymoban.com/news/detail-754037.html

到了这里,关于布隆过滤器及其在Java中的实际应用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【C++】哈希的应用——布隆过滤器

    我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的? 用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选

    2023年04月22日
    浏览(86)
  • 【C++】哈希应用之布隆过滤器

    👀 樊梓慕: 个人主页  🎥 个人专栏: 《C语言》 《数据结构》 《蓝桥杯试题》 《LeetCode刷题笔记》 《实训项目》 《C++》 《Linux》 《算法》 🌝 每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.布隆过滤器的提出 2.布隆过滤器的概念 3.布隆过滤器的模拟实现 3.1布隆

    2024年03月27日
    浏览(37)
  • C++ 哈希的应用【布隆过滤器】

    ✨个人主页: 北 海 🎉所属专栏: C++修行之路 🎃操作环境: Visual Studio 2022 版本 17.6.5 注册账号是进行网络冲浪的第一步操作,而拥有一个具有个性且独一无二的用户昵称是非常重要的,很多人在填写昵称时,常常会看到 此昵称已存在 的提示,系统是如何快速知道当前昵称

    2024年02月14日
    浏览(42)
  • C++哈希应用——位图布隆过滤器

    用哈希表存储用户记录,缺点是需要消耗较大的内存;用位图存储用户记录,缺点是位图一般处理整形,内容是字符串或者自定义类型就很勉强。基于以上,若将哈希和位图结合,称为布隆过滤器,会不会把上面的问题都解决了呢? 概念 布隆过滤器是一种概率型数据结构。

    2024年02月04日
    浏览(52)
  • 哈希的应用--位图和布隆过滤器

    位图(Bitset)是一种数据结构,用于表示一组布尔值,其中每个元素通常对应于一个位或一个二进制值,可以存储0或1。位图在计算机科学和计算机工程中经常用于各种应用,特别是在位级别的标志、掩码和快速查找中。以下是位图的一些关键特点: 二进制表示 :位图中的每

    2024年02月08日
    浏览(52)
  • 【Redis】Redis中的布隆过滤器

    在实际开发中,会遇到很多要判断一个元素是否在某个集合中的业务场景,类似于垃圾邮件的识别,恶意IP地址的访问,缓存穿透等情况。类似于缓存穿透这种情况,有许多的解决方法,如:Redis存储Null值等,而对于垃圾邮件的识别,恶意IP地址的访问,我们也可以直接用 H

    2024年02月12日
    浏览(33)
  • [C++]哈希应用之位图&布隆过滤器

               主厨:邪王真眼 主厨的主页:Chef‘s blog   所属专栏:c++大冒险        我们之前学习了哈希表,哈希表通过映射关系,实现了O(1)的复杂度来查找数据,哈希在实践中是一个非常重要的思想,今天要学习的就是哈希思想的两大应用:位图与布隆过滤器 给 40 亿个

    2024年04月15日
    浏览(39)
  • Java实现布隆过滤器

    背景: 为预防大量黑客故意发起非法的时间查询请求,造成缓存击穿,建议采用布隆过滤器的方法解决。布隆过滤器通过一个很长的二进制向量和一系列随机映射函数(哈希函数)来记录与识别某个数据是否在一个集合中。如果数据不在集合中,能被识别出来,不需要到数据

    2024年02月01日
    浏览(46)
  • 【C++】哈希应用:位图 哈希切分 布隆过滤器

    我走后,他们会给你们加班费,会给你们调休,这并不是他们变好了,而是因为我来过。------龙哥 1. 大厂经典的面试题,给你40亿个不重复的无符号整数,让你快速判断一个数是否在这40亿个数中,最直接的思路就是遍历这40亿个整数,逐一进行比对,当然这种方式可以倒是可

    2023年04月09日
    浏览(40)
  • 哈希的应用 -- 布隆过滤器与海量数据处理

    布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,以用来告诉你 “ 某样东西一定不存在或者可能存在 ”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也

    2024年02月02日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包