数据结构——哈夫曼树与哈夫曼编码

这篇具有很好参考价值的文章主要介绍了数据结构——哈夫曼树与哈夫曼编码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 哈夫曼树

1.1 基本概念

路径:指从根结点到该结点的分支序列。
路径长度:指根结点到该结点所经过的分支数目。
结点的带权路径长度:从树根到某一结点的路径长度与该结点的权的乘积。
树的带权路径长度(WPL):树中从根到所有叶子结点的各个带权路径长度之和。

哈夫曼树是由 n 个带权叶子结点构成的所有二叉树中带权路径长度最短的二叉树,又称最优二叉树。如上图中第三棵树就是一棵哈夫曼树。

1.2 构造哈夫曼树
构造哈夫曼树的算法步骤:
① 初始化:用给定的 n 个权值{w1,w2,…,wn}构造 n 棵二叉树并构成的森林F={T1,T2,…,Tn},其中每一棵二叉树Ti(1<=i<=n)都只有一个权值为 wi 的根结点,其左、右子树为空。
② 找最小树:在森林 F 中选择两棵根结点权值最小的二叉树,作为一棵新二叉树的左、右子树,标记新二叉树的根结点权值为其左、右子树的根结点权值之和。
③ 删除与加入:从 F 中删除被选中的那两棵二叉树,同时把新构成的二叉树加入到森林 F 中。
④ 判断:重复②、③操作,直到森林中只含有一棵二叉树为止,此时得到的这棵二叉树就是哈夫曼树。
简单的说就是先选择权小的,所以权小的结点被放置在树的较深层,而权较大的离根较近,这样一来所构成的哈夫曼树就具有最小带权路径长度。

2. 哈夫曼编码实现
2.1 哈夫曼编码

对一棵具有n个叶子结点的哈夫曼树,若对树中的每个左分支赋0,右分支赋1(或左1右0),则从根到每个叶子的通路上,各个分支的赋值分别构成一个二进制串,该二进制串就称为哈夫曼编码。哈夫曼编码是最优前缀编码,能使各种报文对应的二进制串的平均长度最短。
代码如下:

#include<stdio.h>
#include<string.h>
#include<malloc.h>
typedef struct hnode
{ int weight;
   int lchild,rchild,parent;
 }HTNode,*HuffmanTree;/*定义二叉树的存储结点*/
typedef char **HuffmanCode;
void Select(HTNode HT[],int len,int &s1,int &s2)//选出权值最小的两个结点,下标通过s1和s2传出去
{
    int i,min1=32767,min2=32767;
    for(i=1;i<=len;i++)
    {
        if(HT[i].weight<min1&&HT[i].parent==0)
        {
            s2=s1;
            min2=min1;
            min1=HT[i].weight;
            s1=i;
        }
        else if(HT[i].weight<min2&&HT[i].parent==0)
        {    min2=HT[i].weight;
            s2=i;
        }
    }
}
void CreateHuffman_tree(HuffmanTree &HT,int n)/*建立哈夫曼树*/
{
	int s1, s2;
	if(n <= 1)
	{ 
		return ;
	}
	int m = 2*n - 1;
	HT = new HTNode[m + 1];
	int i = 0;
	for(i = 1; i <= m; i++)
	{
		HT[i].parent = 0;
		HT[i].lchild = HT[i].rchild = 0; 
	}
	printf("哈夫曼树各节点的值:");
	for(i = 1; i <= n; i++)
	{
		scanf("%d", &HT[i].weight);
	}
	for(i = n + 1; i <=m; i++ )
	{
		Select(HT, i-1, s1, s2);
		HT[s1].parent = HT[s2].parent = i;
		HT[i].lchild = s1;
		HT[i].rchild = s2;
		HT[i].weight = HT[s1].weight + HT[s2].weight;
	}
}

void Huffman_code(HuffmanTree HT,HuffmanCode &HC,int n)/*哈夫曼树编码*/
{
	char *cd;
	int start = 0;
	int c = 0, f = 0, i = 0;
	HC = new char*[n + 1];
	cd = new char[n];
	cd[n-1] = '\0';
	for(i = 1; i <= n; ++i)
	{
		start = n - 1;
		c = i;
		f = HT[i].parent;
		while(f!= 0)
		{
			--start;
			if(HT[f].lchild == c)
			{
				cd[start] = '0';
			} 
			else
			{
				cd[start] = '1';
			}
            c = f;
            f = HT[f].parent;
			
		}
		HC[i] = new char[n-start];
			strcpy(HC[i], &cd[start]);
		
	}
	delete cd;
}


int main()
{
    HuffmanTree HT;
    HuffmanCode HC;
    int i, n;
    printf("哈夫曼树节点个数:");
    scanf("%d",&n);
    CreateHuffman_tree(HT, n);/*建立哈夫曼树*/
    Huffman_code(HT,HC,n);/*哈夫曼树编码*/
    for(i=1;i<=n;i++)/*输出字符、权值及编码*/
       printf("编码是:%s\n",HC[i]);
    return 0;
}

结果如下:

数据结构——哈夫曼树与哈夫曼编码,数据结构文章来源地址https://www.toymoban.com/news/detail-754100.html

到了这里,关于数据结构——哈夫曼树与哈夫曼编码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】实验十:哈夫曼编码

    实验十 哈夫曼编码 一、实验目的与要求 1 )掌握树、森林与二叉树的转换; 2 )掌握哈夫曼树和哈夫曼编码算法的实现; 二、 实验内容 1.  请编程实现如图所示的树转化为二叉树。 2.  编程实现一个哈夫曼编码系统,系统功能包括: (1)  字符信息统计:读取待编码的源文

    2024年02月15日
    浏览(47)
  • 【数据结构--哈夫曼编码(C语言版)】

    哈夫曼树 介绍哈夫曼树前先介绍下面几个名词: 1. 结点的路径长度 l 从根结点到该结点的路径上分支的数目 ,如下图结点 a 的 l = 3 。 2. 树的路径长度 树中所有叶子结点的路径长度之和 ,如下图该树的路径长度为 2 + 3 + 3 + 2 + 2 。 3. 结点的权 w 给每一个结点赋予一个新的数

    2024年02月04日
    浏览(50)
  • (数据结构)哈夫曼编码实现(C语言)

    哈夫曼的编码:从一堆数组当中取出来最小的两个值,按照左下右大的进行绘制,将两个权值之和,放入队列当中,然后再进行取出两个小的,以此类推,直到全部结束,在根据图根节点,到叶子节点,每一个分支来得出编码,向左0,向右1,即可得到一个结果。

    2024年02月16日
    浏览(53)
  • C语言---数据结构实验---哈夫曼树及哈夫曼编码的算法实现---图的基本操作

    本篇实验代码非本人写,代码源自外部,经调试解决了部分warning和error后在本地vs上可以正常运行,如有运行失败可换至vs 未来会重构实现该两个实验 内容要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并建立哈夫曼树 2、建立编码

    2024年02月13日
    浏览(58)
  • 【数据结构与算法】哈夫曼编码(最优二叉树)实现

    哈夫曼编码 等长编码:占的位置一样 变长编码(不等长编码):经常使用的编码比较短,不常用的比较短 最优:总长度最短 最优的要求:占用空间尽可能短,不占用多余空间,且不能有二义性 这里给出哈夫曼二叉树的实现: HuffmanTree.h: 测试数据(主函数): 运行结果截图

    2024年02月16日
    浏览(47)
  • 【数据结构与算法】哈夫曼编码(最优二叉树实现

    哈夫曼编码 等长编码:占的位置一样 变长编码(不等长编码):经常使用的编码比较短,不常用的比较短 最优:总长度最短 最优的要求:占用空间尽可能短,不占用多余空间,且不能有二义性 这里给出哈夫曼二叉树的实现: HuffmanTree.h: 测试数据(主函数): 运行结果截图

    2024年02月16日
    浏览(45)
  • 哈夫曼树与哈夫曼编码及等长编码

    哈夫曼树的构造:就是将给定的数据中选择最小的两个权值进行合并,然后重复该操作,构造出一个 二叉树。使其带权路径长度WPL最小的二叉树称为哈夫曼树或最优二叉树。 例如:给定几个数值:0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.01 可以将其扩大一百倍,以方便计

    2024年02月06日
    浏览(43)
  • 哈夫曼树与哈夫曼编码

    哈夫曼树:结点中赋予一个某种意义的值,称为结点的权值,从根结点开始,到目标结点经过的边数,称为路径长度,路径长度乘以权值,称为带权路径长度; 例如:根结点代表着快递集散点,一个叶子结点权值是5,在业务逻辑中代表着重量是5斤的货物📦,路径长度是3,

    2024年02月05日
    浏览(47)
  • 数据结构 实验17:Huffman树和Huffman编码——学习理解哈夫曼树

    目录 前言 实验要求 算法描述 个人想法 代码实现和思路、知识点讲解 知识点讲解 文件传输 Huffman树的存储 Huffman的构造  Huffman编码 编码和译码 代码实现 文件写入和输出 Huffman树初始化 构造Huffman树 求带权路径长度 Huffman编码 Huffman译码 结束 代码测试 测试结果 利用Huffman编

    2024年02月03日
    浏览(61)
  • 数据结构-哈夫曼树

    介绍 哈夫曼树,指 带权路径长度最短的二叉树 ,通常用于数据压缩中 什么是带权路径长度? 假设有一个结点,我们为它赋值,这个值我们称为权值,那么从根结点到它所在位置,所经历的路径,与这个权值的积,就是它的带权路径长度。 比如有这样一棵树,D权值为2  从

    2024年02月20日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包