【Python 零基础入门】常用内置函数 初探

这篇具有很好参考价值的文章主要介绍了【Python 零基础入门】常用内置函数 初探。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Python 简介

Python 是一种解释性, 高级和通用的变成语言. Python 由 Guido van Rossum 创建并 1991 年首次发布. Python 的设计强调代码的可读性, 其雨大允许我们使用相较于 C++ 或 Java 更少的代码表达概念. Python 使得变成变得更简单, 更快捷. 下面就跟着小白我来一起看一下 Python 常用的内置函数.

【Python 零基础入门】常用内置函数 初探,2024 Python 最新基础教程,# Python 零基础入门,python,函数,python 基础,python 内置函数,python 常用函数

为什么要学习内置函数

Python 内置函数 (Built-In Function) 是 Python 解释器直接提供的函数, 相较于别的 Python 函数, 无需导入任何模块即可使用. 熟悉掌握 Python 的内置函数不仅可以帮助我们快速的完成常见的变成任务, 还可以使得我们的代码更加简洁, 易读.

数据类型和转换

【Python 零基础入门】常用内置函数 初探,2024 Python 最新基础教程,# Python 零基础入门,python,函数,python 基础,python 内置函数,python 常用函数

int(): 转为整数

int()函数可以用于将一个字符串 (string) 或数字转换为整形 (int).

格式:

num_int = int(需要转换的变量)

例子:文章来源地址https://www.toymoban.com/news/detail-754259.html

# float->int
x = int(2.8)  # 输出 x=2
y = int("3")  # 输出 y=3

常见用法:

# 将一个字符串组成的列表转换为整型
list_str = ["1", "2", "3", "4", "5"]
list_int = [int(i) for i in list_str]
print(list_str)
print(list_int)

输出结果:

['1', '2', '3', '4', '5']
[1, 2, 3, 4, 5]

float(): 转为浮点数

float()函数用于将一个字符串或数字转换为浮点数.

格式:

num_float = float(需要转换的白能量)

例子:

# int->float
x = float(2)    # 输出 x=2.0

# string->float
y = float("3")  # 输出 y=3.0
z = float("4.2")  # 输出 z=4.2

list(): 转为列表

list()函数用于将一个序列转为列表 (list).

格式:

convert_list = list(需要转换的序列)

例子:

# string->list
x = list("我是小白呀")  # 输出 x=['我', '是', '小', '白', '呀']

# tuple->list
y = list((1, 2, 3, 4, 5))  # 输出 y=[1, 2, 3, 4, 5]

tuple(): 转换为元组

tuple()函数用于将一个序列转换为元组.

格式:

convert_tuple = tuple(需要转换的序列)

例子:

# string->tuple
x = tuple("我是小白呀")  # 输出 x=('我', '是', '小', '白', '呀')

# list->tuple
y = tuple([1, 2, 3, 4, 5])  # 输出 y=(1, 2, 3, 4, 5)
z = tuple(['1', '2', 3, 4, 5])  # 输出 z=('1', '2', 3, 4, 5)

set():转换为集合

set()函数用于创建一个无序不重复元素集.

格式:

convert_set = set(需要转换的变量)

例子:

# string->set
x = set("hello")  # 输出 x={'o', 'e', 'h', 'l'}

# list->set
y = set([1, 2, 2, 3, 4])  # 输出 y={1, 2, 3, 4}

常见用法:

# 对列表进行去重
original_list = [1, 2, 2, 3, 4, 5]
unique_list = list(set(original_list))
print("原始列表:", original_list)
print("去重列表:", unique_list)

# 对字符串进行去重
original_str = "abbccd"
unique_list = list(set(original_str))
print("原始字符串:", original_str)
print("去重列表:", unique_list)

输出结果:

原始列表: [1, 2, 2, 3, 4, 5]
去重列表: [1, 2, 3, 4, 5]
原始字符串: abbccd
去重列表: ['d', 'b', 'a', 'c']

dict(): 创建字典:

dict()函数用于创建一个字典.

例子:

# 创建字典
x = dict(name="我是小白呀", age=18)  # x={'name': '我是小白呀', 'age': 18}

常见用法, 通过zip()函数创建字典:

# 将2个数组合并为字典
list_name = ["张三", "李四", "我是小白呀"]  # 名字数组
list_age = [45, 63, 18]  # 年龄数组
dict_age = dict(zip(list_name, list_age))  # 字典

# 调试输出
print("名字数组:", list_name)
print("年龄数组:", list_age)
print("合并的字典:", dict_age)

输出结果:

名字数组: ['张三', '李四', '我是小白呀']
年龄数组: [45, 63, 18]
合并的字典: {'张三': 45, '李四': 63, '我是小白呀': 18}

数学运算

接下来, 小白我带大家来了解一下 Python 中的数学运算符相关的内置函数.

【Python 零基础入门】常用内置函数 初探,2024 Python 最新基础教程,# Python 零基础入门,python,函数,python 基础,python 内置函数,python 常用函数

abs(): 绝对值

abs()返回数字的绝对值.

格式:

num_abs = abs(需要取绝对值的变量)

例子:

x = abs(-2)  # 输出 x=2
y = abs(-3.1415926)  # 输出 y=3.1415926

pow(): 幂运算

pow()函数返回 x 的 y 次幂.

格式:

output = pow(x, y)

例子:

x = pow(4, 3)  # 输出 x=4^3=64
y = pow(2, 10)  # 输出 y=2^10=1024

常用方法:

# 获取平方数组
original_list = [1, 2, 3, 4, 5]
squared_list = [pow(i, 2) for i in original_list]

# 调试输出
print("原始数组:", original_list)

输出结果:

原始数组: [1, 2, 3, 4, 5]
平方数组: [1, 4, 9, 16, 25]

round(): 四舍五入

round()函数返回浮点数的四舍五入值.

格式:

num_round = round(number, ndigits=None)

参数:

  • num: 浮点数
  • digits: 保留小数点后几位, 默认为 None, 及四舍五入到整数

例子:

x = round(3.1415926)  # 输出 x=3
y = round(3.1415926, 2)  # 输出 y=3.14

常用方法:

# Todo: 将 DataFrame 中的数据取整
np.random.seed(0)  # 设置随机数种子
list_id = [i for i in range(1, 11)]  # 创建 id 数组 (1-11)
list_score = [np.random.rand() * 10 for _ in range(10)]  # 创建 score 数组 [0-10) 随机小数

# 创建一个模拟 DataFrame, 数据为0-10的分数
df = pd.DataFrame({"id": list_id, "score":list_score})
print(df)

# 取整
df["score"] = round(df["score"])
print(df)

输出结果:

   id     score
0   1  5.488135
1   2  7.151894
2   3  6.027634
3   4  5.448832
4   5  4.236548
5   6  6.458941
6   7  4.375872
7   8  8.917730
8   9  9.636628
9  10  3.834415

   id  score
0   1    5.0
1   2    7.0
2   3    6.0
3   4    5.0
4   5    4.0
5   6    6.0
6   7    4.0
7   8    9.0
8   9   10.0
9  10    4.0

min(): 最小值

min()函数返回给定参数的最小值, 参数可以为序列.

格式

out = min(iterable, *, key=None)
  • iterable: 可迭代对象, 包括列表, 元组, 字符串等
  • key: 指定函数, 默认为 None, 及比较元素本身

例子:

# 列表 min() 使用
list1 = [1, 2, 3, 4, 5]
list2 = ["a", "b", "c"]
min1 = min(list1)
min2 = min(list2)

# 元组 min() 使用
tuple1 = (2, 5, 9)
min3 = min(tuple1)

# 字典 min() 使用
dict1 = {'a': 70, 'b': 20, 'c': 30, 'd': 40}
min4 = min(dict1)
min5 = min(dict1, key=dict1.get)

# 调试输出
print(list1, "中列表元素最小值:", min1)
print(list2, "中列表元素最小值:", min2)
print(tuple1, "中元组元素最小值:", min3)
print(dict1, "中字典 key 最小值:", min4)
print(dict1, "中字典 value 最小值对应的 key:", min5)

输出结果:

[1, 2, 3, 4, 5] 中列表元素最小值: 1
['a', 'b', 'c'] 中列表元素最小值: a
(2, 5, 9) 中元组元素最小值: 2
{'a': 70, 'b': 20, 'c': 30, 'd': 40} 中字典 key 最小值: a
{'a': 70, 'b': 20, 'c': 30, 'd': 40} 中字典 value 最小值对应的 key: b

max():最大值

max()函数返回给定参数的最大值, 参数可以为序列.

格式

out = max(iterable, *, key=None)
  • iterable: 可迭代对象, 包括列表, 元组, 字符串等
  • key: 指定函数, 默认为 None, 及比较元素本身

例子:

# 列表 max() 使用
list1 = ["abc", "bc", "c", "d"]
max1 = max(list1)
max2 = max(list1, key=len)

list2 = [3, -6, 7, -8, 2]
max3 = max(list2)
max4 = max(list2, key=abs)

# 字典 max() 使用
students = [
    {"name": "Alice", "score": 85},
    {"name": "Bob", "score": 90},
    {"name": "Charlie", "score": 78}
]
max5 = max(students, key=lambda x: x['score'])


# 调试输出
print(list1, "中列表元素最大值:", max1)
print(list1, "中列表元素最长值:", max2)
print(list2, "中列表元素最大值:", max3)
print(list2, "中列表元素最大绝对值:", max4)
print(students, "中字典特定键最大值:", max5)

输出结果:

['abc', 'bc', 'c', 'd'] 中列表元素最大值: d
['abc', 'bc', 'c', 'd'] 中列表元素最长值: abc
[3, -6, 7, -8, 2] 中列表元素最大值: 7
[3, -6, 7, -8, 2] 中列表元素最大绝对值: -8
[{'name': 'Alice', 'score': 85}, {'name': 'Bob', 'score': 90}, {'name': 'Charlie', 'score': 78}] 中字典特定键最大值: {'name': 'Bob', 'score': 90}

sum(): 求和

sum(): 函数用于对集合进行求和计算.

例子:

numbers = [1, 2, 3, 4, 5]
numbers_sum = sum(numbers)  # 输出numbers_sum=15

常用方法:

# Todo: 将 DataFrame 中的学生每天用餐消费进行求和

# 创建数据
student_id = [111, 111, 111, 111, 112, 112, 112, 113, 113, 113, 113]
day = [1, 1, 2, 2, 1, 2, 3, 1, 2, 3, 3]
pay = [12, 23, 18, 26, 8, 11, 14, 15, 20, 21, 16]
df = pd.DataFrame({"student id": student_id, "day": day, "pay": pay})
print(df)

# 按 id 求和
result = df.groupby(["student id"])["pay"].sum().reset_index()
print("每个学生总消费:", result, sep="\n")

# 按 id 和日期求和
result = df.groupby(["student id", "day"])["pay"].sum().reset_index()
print("每个学生每日消费:", result, sep="\n")

输出结果:

每个学生总消费:
   student id  pay
0         111   79
1         112   33
2         113   72

每个学生每日消费:
   student id  day  pay
0         111    1   35
1         111    2   44
2         112    1    8
3         112    2   11
4         112    3   14
5         113    1   15
6         113    2   20
7         113    3   37

divmod(): 商和余数

divmod()函数接收两非复数的参数, 返回一对数的商和余数.

格式:

output = divmod(a, b)

参数:

  • a: 除数
  • b:被除数
  • return: 商, 余, 同 (a // b, a % b)

例子:

# 8 对 3 的商和余数
result = divmod(8, 3)  # 输出 result=(2, 2)

到了这里,关于【Python 零基础入门】常用内置函数 初探的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python常用内置函数

    Python实用教程_spiritx的博客-CSDN博客 Python 提供丰富了内置函数,这些函数的使用频率非常用,在编程过程中熟练使用内置函数可以大大减少我们的代码逻辑和代码量。 Python 解释器内置了很多函数和类型,任何时候都能使用。这些内置函数直接使用,是不需要导入库的。 - 函

    2024年02月10日
    浏览(54)
  • 【Python 零基础入门】Numpy 常用函数 数组操作 & 数学运算

    Numpy (Numerical Python) 是 Python 编程语言的一个扩展程序库, 支持大量的维度数组与矩阵运算, 并提供了大量的数学函数库. Numpy 利用了多线程数组来存储和处理大型数据集, 从而提供了一个高效的方式来进行数值计算, 特别是对于矩阵预算和线性代数. np.assarray 可以将输入转换为

    2024年02月05日
    浏览(49)
  • Python 常用内置函数详解(二):print()函数----打印输出

    print() 函数是 Python 编程最常见的函数,常用于输出程序结果,默认输出到屏幕,也可以输出到指定文件中。 语法格式: 参数说明: value:表示要输出的值,可以是数字、字符串、各种类型的变量等。 … :值列表,表示可以一次性打印多个值,输出多个值时,需要使用 \\\",\\\"

    2024年04月28日
    浏览(51)
  • 【Python数据分析】Python常用内置函数(二)

    🎉欢迎来到Python专栏~Python常用内置函数(二) ☆* o(≧▽≦)o *☆ 嗨 ~我是 小夏与酒 🍹 ✨ 博客主页: 小夏与酒的博客 🎈该系列 文章专栏: Python学习专栏 文章作者技术和水平有限,如果文中出现错误,希望大家能指正🙏 📜 欢迎大家关注! ❤️ Python技能树:Python入门技

    2024年02月14日
    浏览(46)
  • 【Python数据分析】Python常用内置函数(一)

    🎉欢迎来到Python专栏~Python常用内置函数(一) ☆* o(≧▽≦)o *☆ 嗨 ~我是 小夏与酒 🍹 ✨ 博客主页: 小夏与酒的博客 🎈该系列 文章专栏: Python学习专栏 文章作者技术和水平有限,如果文中出现错误,希望大家能指正🙏 📜 欢迎大家关注! ❤️ Python技能树:Python入门技

    2024年02月15日
    浏览(53)
  • 【Python数据分析】常用内置函数(一)

    🙋‍ 哈喽大家好,本次是python数据分析、挖掘与可视化专栏第四期 ⭐本期内容:常用内置函数 🏆系列专栏:Python数据分析、挖掘与可视化 👍“总有一段时光悄悄过去然后永远怀念.” 本期内容为python的常用内置函数~ 参考书籍:《Python数据分析、挖掘与可视化》 在python中

    2024年02月04日
    浏览(55)
  • 【python基础语法七】python内置函数和内置模块

    eval 和 exec 在和第三方用户交互时候,谨慎使用; 应用不一样: json主要用于传输 转换关系 localtime = mktime = ctime

    2024年02月01日
    浏览(47)
  • 〖大前端 - 基础入门三大核心之JS篇(56)〗- 内置构造函数

    说明:该文属于 大前端全栈架构白宝书专栏, 目前阶段免费 , 如需要项目实战或者是体系化资源,文末名片加V! 作者:哈哥撩编程,十余年工作经验, 从事过全栈研发、产品经理等工作,目前在公司担任研发部门CTO。 荣誉: 2022年度博客之星Top4、2023年度超级个体得主、谷

    2024年02月04日
    浏览(54)
  • Python 常用内置函数详解(一):isinstance()函数----判断对象是否是类或子类

    isinstance() 函数用于判断对象是否是类或者类型元组中任意类元素的实例。 语法结构如下: 【示例1】使用isinstance()函数判断一个实例对象是否属于某个类。代码如下: 程序运行结果如下图所示: 【示例2】使用isinstance()函数判断某个对象是否属于原生类型,代码如下: 程序

    2024年02月22日
    浏览(70)
  • Python 基础(十九):内置函数大全

    ❤️ 博客主页:水滴技术 🌸 订阅专栏:Python 入门核心技术 🚀 支持水滴: 点赞 👍 + 收藏 ⭐ + 留言 💬 大家好,我是水滴~~ Python是一种高级编程语言,具有很多强大的特性,其中之一就是内置函数。Python内置函数是指在Python解释器中可以直接使用的函数,无需导入任何模

    2024年02月11日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包