MATLAB - 凸优化(Convex Optimization)

这篇具有很好参考价值的文章主要介绍了MATLAB - 凸优化(Convex Optimization)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

系列文章目录

 文章来源地址https://www.toymoban.com/news/detail-754819.html

 

 


前言

        凸优化(Convex optimization)是在凸约束(convex constraints)条件下使凸目标函数(convex objective function)最小化的过程,或者等同于在凸约束条件下使凹目标函数最大化的过程。对于许多凸优化问题,满足局部最优(local optimality)条件的点都能被有效地找到。由于局部最优点也是全局最优(global optimum)点,因此只需找到局部最优点即可解决问题。非凸问题的凸近似提供了最优目标值(optimal objective value)和近似解(approximate solutions)的边界。

 

        下图展示了凸优化和非凸优化问题的示例。

 

MATLAB - 凸优化(Convex Optimization),最优控制方法与MATLAB实现,MATLAB使用记录,matlab,机器人,凸优化,自动驾驶,最优控制,算法,ROS

 

        凸优化的应用遍及金融和工程领域,包括投资组合优化(portfolio optimization)、设计优化(design optimization)、参数估计(parameter estimation)、信号处理(signal processing)和最优控制(optimal control)。例如,选择一个股票投资组合,使其收益最大化,但风险和跟踪误差不得超过基准投资组合的上限,这个问题可以表述为一个凸优化问题。

        凸优化是一个数学问题,即找到一个向量 x  的数学问题:

 

满足条件

        (nonlinear inequality constraints - 非线性不等式约束)

        (linear inequality constraints - 线性不等式约束)

        (linear equality constraints - 线性等式约束)

        (bound constraints - 范围约束条件)

其中,  都是凸函数。

 

线性规划(Linear programs,LP)和凸二次规划(convex quadratic programs,QP)是凸优化问题(convex optimization problems)。不等式约束为凸锥的圆锥优化(Conic optimization)问题也属于凸优化问题。具有线性或凸二次方目标以及线性和凸二次方约束的问题(convex quadratic constraints,QCQP)可以表示为二阶锥形规划(second-order cone programs,SOCP),从而可以用高效的凸优化方法求解。

内点法(Interior point algorithms)通常用于解决凸优化问题,可使用矩阵运算和 Cholesky 因式分解(Cholesky factorization)或块 LDL' 因式分解(block LDL’ factorization)在 MATLAB® 中编写。Optimization Toolbox™(Optimization Toolbox™) 拥有线性规划(linear programs)、二次规划(quadratic programs)、非线性规划(nonlinear programs)和二阶锥形规划(second-order cone programs)的内点法实现,适用于大规模问题。

有关解决凸优化问题的更多信息,请参阅优化工具箱(Optimization Toolbox)。


 

一、线性规划(Linear Programming)

        线性规划(Linear programming),又称线性优化(linear optimization),是指在约束条件(bounds)、线性等式(linear equality)和线性不等式约束下,使线性目标函数(linear objective function)最小化或最大化。实例问题包括加工业中的混合(blending)、制造业中的生产规划(production planning)、金融业中的现金流匹配(cash flow matching)以及能源和运输业(energy and transportation)中的规划。

线性规划是一个数学问题,即找到一个向量 x 的数学问题:

满足约束

1.1 用 MATLAB 进行线性规划

        您可以使用 MATLAB® 实现以下常用算法来解决线性规划问题:

  • 内部点(Interior point): 使用初等 - 二元预测 - 校正(primal-dual predictor-corrector)算法,尤其适用于具有结构或可使用稀疏矩阵定义的大规模线性规划。
  • 单纯形(Simplex):使用系统程序生成和测试线性程序的候选顶点解。单纯形算法和相关的对偶-单纯形算法是线性优化中使用最广泛的算法。

        优化工具箱™中的 linprog(linprog) 求解器实现了这些线性优化技术。

 

二、二次规划 - Quadratic Programming

二次规划(QP)是指在边界、线性相等和不相等约束条件下,使目标函数最小化或最大化。这类问题的例子包括金融领域的投资组合优化(portfolio optimization)、电力公司的发电优化和工程领域的设计优化(design optimization)。

二次规划是一个数学问题,即找到一个能使二次函数最小化的向量 x:

eq?%24%5Coperatorname*%7Bmin%7D_%7Bx%7D%5Cleft%5C%7B%7B%5Cfrac%7B1%7D%7B2%7D%7Dx%5E%7B%5Cmathsf%7BT%7D%7DH%20x+f%5E%7B%5Cmathsf%7BT%7D%7Dx%5Cright%5C%7D%24

满足条件:

 

您可以使用 MATLAB® 实现以下常用算法来解决二次编程问题:

  • Interior-point-convex:解决具有任意约束组合的凸问题
  • Trust-region-reflective:解决约束或线性相等约束问题
  • Active-set:解决具有任意约束组合的中小型凸问题

有关二次规划的更多信息,请参阅优化工具箱™。

 

到了这里,关于MATLAB - 凸优化(Convex Optimization)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 鲜奶配送站点的最优化设置问题 - MATLAB 实现

    鲜奶配送站点的最优化设置问题 - MATLAB 实现 问题描述: 鲜奶配送站点的最优化设置问题是一个经典的运筹学问题,它涉及确定最佳的鲜奶配送站点位置,以最小化总体运输成本。本文将使用 MATLAB 编程来解决这个问题,并提供相应的源代码。 解决方法: 为了解决鲜奶配送站

    2024年02月03日
    浏览(38)
  • 利用 MATLAB 编程实现乘子法求解约束最优化问题。 拟 Newton 法

    1、画出 PH 法的算法流程图; 2、MATLAB 编写 PH 法求解约束优化问题的函数,无约束子问题用精确一 维搜索的拟 Newton 法((函数式 M 文件,精度设为 epson 可调);编写程序(命 令式 M 文件),调用 PH 法,求解如下问题:   初始点取(10,10),按教材 P217,例 12 取不同的参

    2024年02月11日
    浏览(49)
  • 最优化算法对偶单纯形法的matlab实现(对偶单纯形法看这一篇就够了)

    最优化算法对偶单纯形法的matlab实现: 要读懂本文代码需要了解:nchoosek,setdiff,eye等函数在matlab中的作用,以及/符号在矩阵运算中的作用。 在高等教育出版社《最优化方法》一书中提到的单纯形法表格如下图所示: 其中:c为目标函数系数, A为约束方程组系数矩阵, b为约

    2023年04月16日
    浏览(40)
  • 微电网优化MATLAB:蚁群算法(Ant Colony Optimization,ACO)求解微电网优化(提供MATLAB代码)

    微电网优化是指通过优化微电网的运行策略和控制算法,以实现微电网的高效、可靠和经济运行。在微电网中,通过合理调度和控制微电源、负荷和储能系统,可以最大限度地提高能源利用效率,降低能源成本,减少对传统电网的依赖,提高供电可靠性。 微电网优化的目标通

    2024年01月19日
    浏览(45)
  • 沙丁鱼优化算法(Sardine optimization algorithm,SOA)求解23个函数MATLAB

    沙丁鱼优化算法(Sardine optimization algorithm,SOA)由Zhang HongGuang等人于2023年提出,该算法模拟沙丁鱼的生存策略,具有搜索能力强,求解精度高等特点。 沙丁鱼主要以浮游生物为食,这些生物包括细菌、腔肠动物、软体动物、原生动物、十足目、幼小藤壶、鱼卵、甲藻、桡足类等

    2024年02月09日
    浏览(44)
  • 【Matlab】线性二次型最优控制问题(LQR控制)

    前面介绍了变分法与极小值原理的基础思想,之后有一个非常重要的应用就是线性二次型的最优控制问题。假如系统是线性的, 性能泛函是状态变量与控制变量的二次型函数的积分 ,那么这样的问题称之为线性二次型最优控制问题。形如: 上式中,Q1为状态加权矩阵,Q2为控

    2024年02月05日
    浏览(37)
  • CasADi - 最优控制开源 Python/MATLAB 库

    CasADi 是一款开源软件工具,用于数值优化,特别是最优控制(即涉及微分方程的优化)。该项目由 Joel Andersson 和 Joris Gillis 在鲁汶工程大学工程优化中心 (OPTEC) 在读博士生在 Moritz Diehl 的指导下发起。 本文档旨在简要介绍 CasADi。阅读之后,您应该能够在 CasADi 的符号框架中制

    2024年02月05日
    浏览(50)
  • 【最优化算法】基于【MATLAB】的最速下降仿真

    无约束问题的求解过程一般都是通过一系列的一维搜索来实现,搜索方向的不同,形成了不同的最优化方法。这篇文章从最速下降法入手,来进行搜索。 最速下降法又叫梯度法,通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。如果我们需要求解损

    2024年02月05日
    浏览(41)
  • 基于电鳗觅食优化算法(Electric eel foraging optimization,EEFO)的无人机三维路径规划(提供MATLAB代码)

    无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。 电鳗觅食优化算法(Elect

    2024年03月24日
    浏览(51)
  • FJSP:霸王龙优化算法(Tyrannosaurus optimization,TROA)求解柔性作业车间调度问题(FJSP),提供MATLAB代码

    柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),是一种经典的组合优化问题。在FJSP问题中,有多个作业需要在多个机器上进行加工,每个作业由一系列工序组成,每个工序需要在特定的机器上完成。同时,每个机器一次只能处理一个工序,且每个工序的处理时

    2024年04月11日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包