【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现

这篇具有很好参考价值的文章主要介绍了【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

1️⃣文章引言

当今,AI大模型是一个火热的关键词。随着人工智能的迅猛发展,AI大模型在各个领域展现出了巨大的潜力和应用价值。在自动驾驶领域,AI大模型的应用驱动自动驾驶算法具备更强的泛化能力。

那么 AI大模型 为自动驾驶赋能了什么?它的未来发展前景又是怎样?

本文将以主流自动驾驶汽车特斯拉为例,揭开AI大模型在自动驾驶领域的神秘面纱


AI大模型在自动驾驶中的应用涵盖了深度神经网络、卷积神经网络、循环神经网络、BEV+Transformer特征级融合以及语义分割等方面。通过这些应用,AI大模型能够提供强大的感知和理解能力,为自动驾驶系统的性能和安全性提供关键支持。

2️⃣视觉感知优化汽车之眼

在自动驾驶中,视觉感知是非常重要的一项技术,AI大模型在视觉感知上也有着广泛的应用。

AI大模型可以通过目标检测和跟踪技术,实现对道路上的车辆、行人等目标的准确识别和追踪。这种技术能够帮助自动驾驶系统建立对周围环境的感知,并为决策和规划提供必要的信息。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

常见的目标检测算法包括基于传统方法的Haar特征级联分类器、HOG+SVM以及基于深度学习的Faster R-CNN和YOLO等。这些算法通常通过在图像上滑动窗口,并使用分类器来判断窗口内是否存在目标,进而完成目标的定位与识别。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

光流估计是通过分析连续帧图像中像素的位移来推断运动信息的技术。

AI大模型可以利用光流估计来检测道路上的动态物体,并进行动态障碍物的预测和跟踪。这对于自动驾驶系统的安全性和稳定性至关重要。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

光流估计基于亮度恒定和空间连续假设,将相邻图像中同一点的灰度变化关系转化为速度向量场,其中点的运动轨迹是连续、等间距的。通过对图像中的特征点进行跟踪,可以得到这些特征点的速度向量,从而推断出物体在图像中的运动情况。

以下是光流估计的简单代码:

import cv2
cap = cv2.VideoCapture(0)
# 设置参数
feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 初始化点的位置
old_points = None
while True:
    ret, frame = cap.read()
    # 灰度处理
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # 检测特征点
    if old_points is None:
        old_points = cv2.goodFeaturesToTrack(gray, mask=None, **feature_params)
    else:
        # 计算光流
        new_points, status, error = cv2.calcOpticalFlowPyrLK(old_gray, gray, old_points, None, **lk_params)
        # 选取好的新特征点
        good_new = new_points[status == 1]
        # 选取对应的旧特征点
        good_old = old_points[status == 1]
        # 绘制跟踪结果
        for i, (new, old) in enumerate(zip(good_new, good_old)):
            a, b = new.ravel()
            c, d = old.ravel()
            mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)
            frame = cv2.circle(frame, (a, b), 5, color[i].tolist(), -1)
        img = cv2.add(frame, mask)
        old_gray = gray.copy()  # 更新旧特征点
        old_points = good_new.reshape(-1, 1, 2)  # 更新旧特征点
    cv2.imshow('frame', img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

AI大模型在目标检测与跟踪、路面分割与地面估计、光流估计与动态物体检测等方面的应用,能够提供强大的视觉感知能力,为自动驾驶系统的安全性和性能提供重要支持。


3️⃣神经网络赋能感知算法

神经网络是自动驾驶中的重要组成部分,用于感知、决策和控制,提供智能化的数据处理和驾驶决策能力。

在自动驾驶中,我们主要运用到了深度神经网络DNN、卷积神经网络CNN、循环神经网络RNN三种神经网络。

深度神经网络DNN

深度神经网络是一种由多个神经网络层级组成的模型,每一层都会对输入数据进行一系列的非线性转换和特征提取。通过增加网络的深度,深度神经网络可以学习到更复杂、抽象的特征表示,从而提高模型的表达能力和性能。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习
在自动驾驶中,深度神经网络常用于图像识别、目标检测、语义分割等感知任务,以及决策和规划等高级驾驶任务。

卷积神经网络CNN

卷积神经网络通过卷积层池化层的组合,可以从图像中提取特征,并自动学习这些特征的表示。卷积操作可以在输入图像上滑动一个小的窗口,将窗口内的局部信息与卷积核进行卷积运算,以提取不同位置的特征。而池化层则可以对特征图进行下采样,保留最重要的特征信息。通过堆叠多个卷积层和池化层,CNN可以逐渐提取出更高级别的特征,从而实现对图像的分类、检测和分割等任务。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

在自动驾驶中,CNN被广泛应用于实现车辆的视觉感知,如道路边界识别障碍物检测交通标志识别等。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

循环神经网络RNN

循环神经网络是一种用于处理序列数据的神经网络。与传统的前馈神经网络不同,RNN具有循环连接,使得它可以保持记忆并处理变长的序列输入。

举个例子:

假设我们有一段文本:“The cat sat on the mat”,现在需要将其进行自动翻译为中文。我们可以使用循环神经网络来完成这个任务。

首先,我们定义一个包含若干隐藏层的循环神经网络,并将整个英文传入网络中。在每个时间步长上,网络会从前一个时间步长中的隐藏状态和当前时间步长的输入中计算出当前时间步长对应的隐藏状态,并将其传递到下一个时间步长。在整个文本输入完成后,我们从最后一个隐藏状态中提取出该文本的语义表示

接着,我们可以将这个语义表示作为输入,连同一个全连接层一起,构成一个解码器。在解码器中,我们在每个时间步长上都输出一个汉字。为了让模型学习到如何正确翻译句子,我们将整个中文文本作为目标输出,并以其与解码器的输出之间的差异作为损失函数,使用反向传播算法对整个模型进行训练。经过数代迭代,循环神经网络将逐渐学会将英文文本翻译成中文

图示如下:

输入层               隐藏层                   输出层
--------        -----------        --------
|  w   | ------->|   neuron  |------->|   x   |
|  o   |         |    (h)    |        |   n   |
|  r   | <-------|            |<-------|   .
|  d   | ------->|            |------->|   .
--------        ------------       --------

循环神经网络在自然语言处理、语音识别、时间序列预测等任务中广泛应用。RNN能够捕捉到序列中的动态模式,并对未来的内容进行预测或生成。


4️⃣BEV+Transformer创新特征级融合

特征级融合指的是将不同来源或不同类型的特征进行整合,以提升模型性能和表征能力。

BEV是一种俯视图,可以提供关于场景的全局信息和准确的空间定位。BEV以图像的形式展示了车辆周围的环境,每个像素代表一种属性(例如障碍物、道路线等)。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

而Transformer是一种基于自注意力机制的序列建模方法,它通过多头自注意力机制和前馈神经网络构建,可以同时考虑序列中的长距离依赖关系,并且在处理任意长度的序列时具有可扩展性。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

使用Transformer网络来处理BEV图像中的特征,并将其编码为高维特征表示。然后,这些特征可以与其他传感器(如相机图像)提取的特征进行融合,形成一个更加综合且全面的特征表示。

简单来说, 使用融合后的特征表示作为输入,目标检测算法会根据综合特征来预测物体的位置、类别和其他属性。

这样的融合可以帮助模型更好地理解和处理复杂的场景,并提升任务的性能,例如目标检测、目标跟踪和行为预测等。


5️⃣语义分割深化场景理解

语义分割是计算机视觉领域的一个任务,旨在将图像中的每个像素标记为对应的语义类别,从而实现对图像的像素级别理解。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

语义分割能够将图像中的每个像素进行分类,包括物体、背景和其他区域

同时,语义分割也可以区分出图像中不同的物体实例,并给它们分配独立的类别标签,例如目标的姿态、形状和尺寸等特征。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习

这提供了更详细和准确的场景信息,也为各种计算机视觉任务和应用提供了更强大的支持和基础。


总结

AI大模型的发展和成熟为自动驾驶技术带来了巨大的推动力。

未来,自动驾驶将成为安全、高效和舒适出行的代名词,同时对交通方式和城市规划产生深远的影响,为我们创造更美好的出行体验。

【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现,AI广延,人工智能,自动驾驶,机器学习,AI,计算机视觉,目标检测,深度学习文章来源地址https://www.toymoban.com/news/detail-755232.html

到了这里,关于【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI在日常生活中的应用:从语音助手到自动驾驶

    🎉欢迎来到AIGC人工智能专栏~探索AI在日常生活中的应用 ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:AIGC人工智能 文章作者技术和水平有限,如果文中出现错误,希望大家能指正🙏 📜 欢迎大家关注! ❤️ 欢迎来到我的博客!今天

    2024年02月11日
    浏览(34)
  • AI实战,用Python玩个自动驾驶!

    gym是用于开发和比较强化学习算法的工具包,在python中安装gym库和其中子场景都较为简便。 安装gym: 安装自动驾驶模块,这里使用 Edouard Leurent 发布在 github 上的包 highway-env: 其中包含6个场景: 高速公路——“highway-v0” 汇入——“merge-v0” 环岛——“roundabout-v0” 泊车——

    2024年02月04日
    浏览(41)
  • 自动驾驶中大火的AI大模型中有哪些研究方向,与Transformer何干?

    摘要: 本文将针对大模型学习中可能遇见的问题进行分析梳理,以帮助开发者在利用大模型在自动驾驶场景处理中学习更好的策略,利用有关大模型性能评价的问题,制定一个科学的标准去判断大模型的长处和不足。 随着自动驾驶行业发展对于大数据量处理的强大需求,其

    2024年02月21日
    浏览(41)
  • 影刀自动化采集底层逻辑

    hello,大家好,这里是【玩数据的诡途】 接上回 我的影刀故事 今天给大家介绍一下整个采集的底层逻辑,包括业务流程自动化也是基于这一套基础逻辑进行展开的,顺便带大家熟悉一下影刀,既然叫影刀系列了,那后续一些分享也理所当然的基于影刀来进行 工欲善其事必先利

    2024年02月07日
    浏览(39)
  • 【AI底层逻辑】——篇章4:大数据处理与挖掘

    目录 引入 一、大数据概述 二、数据处理的流程方法 1、数据收集——“从无到有”

    2024年02月12日
    浏览(61)
  • 【AI底层逻辑】——篇章7(下):计算资源&软件代码共享

    目录 续上篇... 三、计算资源 1、第一阶段:数据大集中 2、第二阶段:资源云化

    2024年02月10日
    浏览(52)
  • 【AI底层逻辑】——“数学华尔兹”之一元线性回归

    一元线性回归模型 想必大家都耳熟能详,这里不再赘述。但在使用python中机器学习包时一定见过类似模型 评价参数 的输出,这一章我们就讲一讲回归分析里一些模型评价概念! 方差分析是一种用于确定线性回归模型中 不同变量对目标变量解释程度 的统计技术。方差分 析

    2024年02月02日
    浏览(42)
  • 关于线性模型的底层逻辑解读 (机器学习 细读01)

             线性回归是机器学习中 有监督机器学习 下的一种算法。 回归问题主要关注的是因变量(需要预测的值,可以是一个也可以是多个)和一个或多个数值型的自变量(预测变量)之间的关系。 需要预测的值:即目标变量, target ,y, 连续值预测变量 。 影响目标变量的因素

    2024年02月07日
    浏览(35)
  • 【AI底层逻辑】——篇章5(上):机器学习算法之回归&分类

    目录 引入 一、何为机器学习 1、定规则和学规则 2、算法的定义

    2024年02月16日
    浏览(56)
  • 【AI底层逻辑】——篇章6:人工神经网络(深度学习算法)

    目录 引入 一、深度学习算法 1、人工神经网络结构 2、卷积神经网络

    2024年02月14日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包