AI大模型低成本快速定制法宝:RAG和向量数据库

这篇具有很好参考价值的文章主要介绍了AI大模型低成本快速定制法宝:RAG和向量数据库。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 前言

  当今人工智能领域,最受关注的毋庸置疑是大模型。然而,高昂的训练成本、漫长的训练时间等都成为了制约大多数企业入局大模型的关键瓶颈。

  这种背景下,向量数据库凭借其独特的优势,成为解决低成本快速定制大模型问题的关键所在。

  向量数据库是一种专门用于存储和处理高维向量数据的技术。它采用高效的索引和查询算法,实现了海量数据的快速检索和分析。如此优秀的性能之外,向量数据库还可以为特定领域和任务提供定制化的解决方案。

  科技巨头诸如腾讯、阿里等公司纷纷布局向量数据库研发,力求在大模型领域实现突破。大量中小型公司也借助向量数据库的能力快速进军大模型,抢占市场先机。

  除此之外,近期发布的多个关于向量数据库的行业研究报告也表明,向量数据库将成为未来数据存储和处理的主流趋势,市场规模有望迅速扩大。

  可以说,向量数据库已然成为了推动人工智能技术发展的重要驱动力。在这场技术变革中,率先抓住向量数据库的发展机遇,就更有可能引领未来的科技潮流。

AI大模型低成本快速定制法宝:RAG和向量数据库,大模型,人工智能,大模型,大语言模型,RAG,向量数据库

  上图为VectorDB 应用流程。对应链接为:https://www.pinecone.io/learn/vector-database/。

  目前,低成本快速定制大模型已经成为了现实。

  对很多开发者而言,微调大模型的学习门槛并不高,自学也能简单上手,但是在实际应用中还是会出现各种各样的问题。

2. RAG和向量数据库

  随着技术的不断发展,大模型已经能够帮助个人和企业提升生产力,但受限于数据实时性、隐私性和上下文长度限制等三大挑战,向量数据库和RAG应运而生。RAG,又称“检索增强生成”,独特地结合了检索和生成两个环节。它不仅仅是一个生成模型,更是一个结合了embedding向量搜索和大模型生成的系统。首先,RAG利用embedding模型将问题和知识库内容转换为向量,并基于相似性找到top-k的相关文档。接着,这些文档被提供大模型,进而生成答案。这种方法不仅提高了答案的质量,更重要的是,它也为模型的输出提供了可解释性。除了embedding检索器以外,也可结合BM25 检索器进行集成学习,从而达到更好的检索效果。

def get_retriever(
        self,
        docs_chunks,
        emb_chunks,
        emb_filter=None,
        k=2,
        weights=(0.5, 0.5),
):
    bm25_retriever = BM25Retriever.from_documents(docs_chunks)
    bm25_retriever.k = k

    emb_retriever = emb_chunks.as_retriever(
        search_kwargs={
            "filter": emb_filter,
            "k": k,
            "search_type": "mmr",
        }
    )
    return EnsembleRetriever(
        retrievers={"bm25": bm25_retriever, "chroma": emb_retriever},
        weights=weights,
    )

  向量数据库是一种专门用于存储和查询向量数据的数据库系统,与传统数据库相比,向量数据库使用向 量化计算,能够高速地处理大规模的复杂数据;并可以处理高维数据,例如图像、音频和视频等,解决传统关系型数据库中的痛点; 同时,向量数据库支持复杂的查询操作,也可以轻松地扩展到多个节点,以处理更大规模的数据。

  如何发挥外挂知识库和向量数据库的最大价值,如何从 0 到 1 做一款向量数据库,如何设计技术架构,关键技术瓶颈是如何突破的,如何用 RAG 和向量数据库搭建企业知识库,技术实现过程中容易走哪些弯路,有没有什么避坑指南等等问题和困惑,都是技术应用和行业发展的阻碍。

  可见,对于 RAG 和向量数据库领域而言,技术实践和一线的落地场景依然需要持续探索和挖掘。

  除了最佳实践外,大模型领域一直无法回避的挑战就是变化太快。

  OpenAI 首届开发者大会在几天前彻底引爆,并被广泛定义为改变了现有的大模型格局。这会对向量数据库行业的发展有什么影响呢?RAG 又再次走到了台前?这个领域现在还值得投入吗?未来又有什么技术能替代它呢……

  类似这种关于技术未来和技术视野的思考与探讨,在快速变化的时代愈加重要,并将指导大模型领域的企业优化战略布局,引导从业者完成职业升级和职业规划。

AI大模型低成本快速定制法宝:RAG和向量数据库,大模型,人工智能,大模型,大语言模型,RAG,向量数据库

  基于此,机器之心专门策划了以「大模型时代的向量数据库」为主题的 AI 技术论坛。

  论坛持续两天,我们不仅关注 RAG 和向量数据库的技术实现和技术突破,更聚焦产业最佳实践,看看向量数据库在大模型时代如何高效落地,有哪些应用场景。除此之外,向量数据库的未来将何去何从,企业和个人又如何能借势完成战略布局和职业升级呢?

  相信这场技术论坛一定会带给你启发和收获。其中两位主题演讲神秘嘉宾也已全部到位,分别是复旦大学张奇教授和微软亚洲研究院首席研究员陈琪老师,快来看看他们的分享内容和最新日程吧。

3. 论坛日程

  本次论坛会聚了国内众多知名高的专家学者、互联网大厂和AI独角兽的技术骨干等各界精英,以“低成本快速定制大模型”为主题,着重探讨“RAG和向量数据库的理论与实践”两个方面的问题。本次论坛内容丰富多样,不仅在理论层面上进行了深入的讲解,而且从实践层面上讲解了向量数据库、知识库等方面的最佳实践。

大模型工作原理深入讲解:

  • 大规模向量索引与向量数据库的归一化
  • 从混乱到秩序:揭秘生成式搜索背后的概率
  • GTE:预训练语言模型驱动的文本Embedding
  • jina-embeddings-v2:打破向量模型512长度限制的

大模型向量数据库、知识库的最佳实践:

  • 大语言模型知识能力获取与知识问答实践
  • 腾讯云向量数据库的技术创新与最佳实践
  • 阿里云向量检索增强大模型对话系统最佳实践
  • 百度智能云BES在大规模向量检索场景的探索实践
  • 火山引擎向量数据库VikingDB技术演进及应用
  • DingoDB多模向量数据库:大模型时代的数据引擎
  • 搜索增强型(RAG)AI原生向量数据库AwaDB技术创新与实践
  • 星环科技分布式向量数据库提升LLM知识库召回精度最佳实践
  • 利用向量数据库搭建企业知识库的优化实践
  • 使用向量数据库快速构建本地轻量图片搜索引擎
  • 向量数据库在大模型时代的应用

职业规划与未来展望:

  • 聊聊技术和职业规划
  • 大模型时代向量数据库新未来

  本场论坛重在行业技术交流,嘉宾分享均是技术干货,不夹带产品广告。(如想了解相关产品或项目,欢迎移步展位区)
AI大模型低成本快速定制法宝:RAG和向量数据库,大模型,人工智能,大模型,大语言模型,RAG,向量数据库

4. 购票方式

  双十一购票优惠,双十一优惠期间,论坛 2 天通票,最低仅售 1999 元 / 张,含 2 天五星级酒店午餐自助,快来报名吧!

  官方报名链接为:https://www.bagevent.com/event/sales/l38st4zknru6v8r21rq2naznjrvqh1xs,即日起至 11 月 19 日 23:55 时,购票参会即可享门票直减 2000 元优惠福利,优惠票价先到先得。

  关于本次活动商务合作、团购、发票、内容等相关问题,欢迎添加本场活动小助手 Alice可通过邮件(jiayaning@jiqizhixin.com)或者私信本人进行咨询。

  本场论坛活动重在行业交流,如果你有任何创意或是反馈,都欢迎一起聊聊~文章来源地址https://www.toymoban.com/news/detail-755343.html

到了这里,关于AI大模型低成本快速定制法宝:RAG和向量数据库的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • (一)AI本地知识库问答(可运行):LangChain+Chroma向量数据库+OpenAi大模型

    只需要看config目录下的config.py,data目录下的txt知识库文件,db向量数据库文件在持久化部署后会自动生成,route下的app.py,scripts目录下的Chroma向量库持久化部署.py这几个就可以,scripts目录下的考勤问答.py和test目录下都是单独的自己测试的小代码,可以不用关注 因为运行需要

    2024年02月03日
    浏览(54)
  • 定制化需求|一个人工智能大模型应用的算力成本有多高?

    “  人工智能的核心是算力。 ” 01 — 需要多少预算? 最近在学习大模型ChatGPT、ChatGLM,研究结合企业的应用场景,解决一些业务难点、痛点,不免涉及本地化部署、微调、训练、知识库文档数据提取等等方面的问题。‍‍‍‍ 同时还需要对硬件成本进行一个大致的估算:这

    2024年02月05日
    浏览(50)
  • [FPGA 学习记录] 快速开发的法宝——IP核

    快速开发的法宝——IP核 在本小节当中,我们来学习一下 IP 核的相关知识。 IP 核在 FPGA 开发当中应用十分广泛,它被称为快速开发的法宝。在本小节当中,我们将和各位朋友一起来学习了解 IP 核的相关知识、理解掌握 IP 核的调用方法。 我们分为以下几个部分进行 IP 核的学

    2024年02月05日
    浏览(49)
  • 【前沿技术杂谈:AI 模型训练成本】到 2030 年,AI 模型训练成本预计将从 1 亿美元增加到 5 亿美元

    根据 OpenAI 最近的一份报告,到 2030 年,训练大型 AI 模型的成本将从 1 亿美元上升到 5 亿美元。 对更多数据的需求是推高机器学习模型训练成本的主要因素之一。 人工智能投资在很大程度上受到训练机器学习模型成本的影响。 OpenAI 最近的一份报告发现,到 2030 年,训练大型

    2024年02月20日
    浏览(44)
  • 阿里首提前向训练框架:让大模型深度思考,可快速定制专属模型

    大语言模型(LLM)是当前自然语言处理领域最核心的技术,以 GPT-4 为代表的大语言模型展现出了类人的学习能力。其中,情境学习(In-context Learning)是大语言模型最神秘的能力之一。如下图所示,在这种情境学习的范式下,大模型无需更新任何参数,仅依赖几个示例样本(demonstrations)就可以学习新任务,执行新样本的预测。

    2024年02月11日
    浏览(47)
  • 【大模型 向量库】从向量搜索到向量数据库

      向量伴随着 AI 模型的发展而发展。 向量:AI 理解世界的通用数据形式,是多模态数据的压缩。 比如大模型输入输出都是文字文本,但模型实际接触和学习数据是向量化文本。 这个步骤叫 Embedding(嵌入),将文字文本转化为保留语义关系的向量文本。 embedding 模型对自然语

    2024年02月20日
    浏览(41)
  • 大语言模型&向量数据库

    文章来源:A Comprehensive Survey on Vector Database:Storage and Retrieval Technique, Challenge 链接: https://arxiv.org/pdf/2310.11703.pdf Typically, large language models (LLMs) refer to Transformer language models that contain hundreds of billions (or more) of parameters, which are trained on massive text data. On a suite of traditional NLP benchmark

    2024年02月02日
    浏览(52)
  • 向量数据库——AI时代的基座

    向量数据库 在构建基于大语言模型的行业 智能应用 中扮演着重要角色。大模型虽然能回答一般性问题,但在垂直领域服务中,其知识深度、准确度和时效性有限。为了解决这一问题,企业可以利用向量数据库结合大模型和自有知识资产,构建垂直领域的智能服务。 向量数据

    2024年02月05日
    浏览(60)
  • 【AI大模型应用开发】【RAG评估】1. 通俗易懂:深度理解RAGAS评估方法的原理与应用

    大家好,我是同学小张,日常分享AI知识和实战案例 欢迎 点赞 + 关注 👏, 持续学习 , 持续干货输出 。 +v: jasper_8017 一起交流💬,一起进步💪。 微信公众号也可搜【同学小张】 🙏 本站文章一览: 上篇文章【AI大模型应用开发】【RAG评估】0. 综述:一文了解RAG评估方法、

    2024年04月13日
    浏览(40)
  • 《向量数据库指南》——AI原生向量数据库Milvus Cloud 2.3新功能

    支持用户通过 upsert 接口更新或插入数据。已知限制,自增 id 不支持 upsert;upsert 是内部实现是 delete + insert所以性能上会有一定损耗,如果明确知道是写入数据的场景请继续使用 insert。 支持用户通过输入参数指定 search 的 distance 进行查询,返回所有与目标向量距离位于某一

    2024年02月09日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包