OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测)

这篇具有很好参考价值的文章主要介绍了OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、引言

通过opencv_apps,你可以在ROS中以最简单的方式运行OpenCV提供的许多功能,也就是说,运行一个与功能相对应的launch启动文件,就可以跳过为OpenCV的许多功能编写OpenCV应用程序代码,非常的方便。
对于想熟悉每个细节的伙伴们,可以去看源码,对于熟悉视觉操作很有帮助。
官方说明:http://wiki.ros.org/opencv_apps
github源码:https://github.com/ros-perception/opencv_apps

2、启动操作

2.1、opencv_apps.launch 

先来启动摄像头等相关操作,需要启动opencv_apps.launch文件,我们先来了解下: 

gedit /home/jetson/workspace/catkin_ws/src/jetbot_ros/launch/opencv_apps.launch
<launch>
    <arg name="img_flip" default="False"/>
    <arg name="img_transform" default="True"/>
    <group if="$(arg img_transform)">
        <arg name="img_topic" default="/csi_cam_0/image_raw"/>
        <include file="$(find jetson_nano_csi_cam)/launch/jetson_csi_cam.launch"/>
        <node name="img_transform" pkg="jetbot_ros" type="img_transform.py" output="screen">
            <param name="img_flip" type="bool" value="$(arg img_flip)"/>
            <param name="img_topic" type="string" value="$(arg img_topic)"/>
        </node>
    </group>
</launch>

这里<include>节点包含一个jetson_csi_cam.launch启动文件以及一个名为img_transform的节点
其中jetson_csi_cam.launch我们查看下里面的内容:

cat /home/jetson/workspace/catkin_ws/src/jetson_nano_csi_cam_ros/launch/jetson_csi_cam.launch

里面是一些摄像头的参数设置和启动摄像头,通过GSCAM开源包将GStreamer图像流引入到ROS中,转换成sensor_msgs/Image类型的Image话题,发布到ROS中,供其他节点使用。

2.2、img_transform.py

然后就是做这些操作的节点,我们来看下它的源码: 

gedit /home/jetson/workspace/catkin_ws/src/jetbot_ros/scripts/img_transform.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2 as cv
from cv_bridge import CvBridge
from sensor_msgs.msg import Image

def topic(msg):
    if not isinstance(msg, Image):
        return
    bridge = CvBridge()
    frame = bridge.imgmsg_to_cv2(msg, "bgr8")
    # Canonical input image size
    frame = cv.resize(frame, (640, 480))
    if img_flip == True: frame = cv.flip(frame, 1)
    # opencv mat ->  ros msg
    msg = bridge.cv2_to_imgmsg(frame, "bgr8")
    pub_img.publish(msg)

if __name__ == '__main__':
    rospy.init_node("pub_img", anonymous=False)
    img_topic = rospy.get_param("~img_topic", "/csi_cam_0/image_raw")
    img_flip = rospy.get_param("~img_flip", False)
    sub_img = rospy.Subscriber(img_topic, Image, topic)
    pub_img = rospy.Publisher("/image", Image, queue_size=10)
    rate = rospy.Rate(2)
    rospy.spin()

这里就是定义一个pub_img节点,订阅CSI摄像头相关的话题,然后通过Image话题进行发布,供其余节点使用。其中获取参数:rospy.get_param("~img_topic", "/csi_cam_0/image_raw"),如果没有在~img_topic获取到,就使用/csi_cam_0/image_raw默认值。同样的rospy.get_param("~img_flip", False)如果没有获取到~img_flip的值,就默认为False

2.3、打开相机

熟悉摄像头的相关操作之后,我们就来做一些准备工作,开启相机:
roslaunch jetbot_ros opencv_apps.launch
查看方式:rqt_image_view,如下图:

OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测),机器人操作系统(ROS),Python,opencv_apps,rospy.get_param,corner_harris,hough_lines,contour_moments,LK光流

或者网页查看:rosrun web_video_server web_video_server
然后使用IP+端口就可以查看了,如下图:

OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测),机器人操作系统(ROS),Python,opencv_apps,rospy.get_param,corner_harris,hough_lines,contour_moments,LK光流

然后点击里面的话题,就可以看到摄像视频了,如下图:

OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测),机器人操作系统(ROS),Python,opencv_apps,rospy.get_param,corner_harris,hough_lines,contour_moments,LK光流

我们来看下开启了哪些话题:rostopic list 

/csi_cam_0/camera_info
/csi_cam_0/image_raw
/csi_cam_0/image_raw/compressed
/csi_cam_0/image_raw/compressed/parameter_descriptions
/csi_cam_0/image_raw/compressed/parameter_updates
/csi_cam_0/image_raw/compressedDepth
/csi_cam_0/image_raw/compressedDepth/parameter_descriptions
/csi_cam_0/image_raw/compressedDepth/parameter_updates
/csi_cam_0/image_raw/theora
/csi_cam_0/image_raw/theora/parameter_descriptions
/csi_cam_0/image_raw/theora/parameter_updates
/image
/rosout
/rosout_agg 

是一些关于csi摄像头相关的话题,接下来我们对里面大量的示例做一个演示 

3、哈里斯角点

因为我们都是在opencv_apps包里面,所以先来这个所在工作区间的这个包的launch目录里面。
查看下有哪些启动文件:ls /home/jetson/workspace/catkin_ws/src/opencv_apps/launch/

 adding_images.launch               hough_circles.launch
camshift.launch                    hough_lines.launch
contour_moments.launch             hsv_color_filter.launch
convex_hull.launch                 lk_flow.launch
corner_harris.launch               people_detect.launch
discrete_fourier_transform.launch  phase_corr.launch
edge_detection.launch              pyramids.launch
face_detection.launch              rgb_color_filter.launch
face_recognition.launch            segment_objects.launch
fback_flow.launch                  simple_flow.launch
find_contours.launch               smoothing.launch
general_contours.launch            threshold.launch
goodfeature_track.launch           watershed_segmentation.launch
hls_color_filter.launch

可以看到对图像操作的功能还是挺多的,有霍夫圆、霍夫直线、轮廓矩、LK光流、哈里斯角点、边缘、人物、面部识别等等

3.1、corner_harris.launch

判断某个点是图像中的角点,这里的对角点的检测,我们花多点时间重点来说明下,后面的节点基本就是展示为主。
roslaunch opencv_apps corner_harris.launch
启动如下,使用一张棋盘格式的图片让它识别:

OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测),机器人操作系统(ROS),Python,opencv_apps,rospy.get_param,corner_harris,hough_lines,contour_moments,LK光流
可以看到图片中的角点,有很多的小圆圈给标注着,这里的角点检测的多少和准确度,取决于上面的threshold阈值大小,可以自行调节,调小了,角点数量就会多,相对而言准确度也在下降,调大阈值,角点数量就相应减少,准确度要高。 

我们来看下这个启动文件里面的内容:

cat  /home/jetson/workspace/catkin_ws/src/opencv_apps/launch/corner_harris.launch
<launch>
  <arg name="node_name" default="corner_harris" />

  <arg name="image" default="image" doc="The image topic. Should be remapped to the name of the real image topic." />

  <arg name="use_camera_info" default="false" doc="Indicates that the camera_info topic should be subscribed to to get the default input_frame_id. Otherwise the frame from the image message will be used." />
  <arg name="debug_view" default="true" doc="Specify whether the node displays a window to show image" />
  <arg name="queue_size" default="3" doc="Specigy queue_size of input image subscribers" />

  <arg name="threshold" default="200" doc="Threshold value of a circle around corners's norm" />

  <!-- corner_harris.cpp  -->
  <node name="$(arg node_name)" pkg="opencv_apps" type="corner_harris" >
    <remap from="image" to="$(arg image)" />
    <param name="use_camera_info" value="$(arg use_camera_info)" />
    <param name="debug_view" value="$(arg debug_view)" />
    <param name="queue_size" value="$(arg queue_size)" />
  </node>
</launch>

3.2、corner_harris.cpp

前面是一些参数设置,后面是一个node节点部分,其中type="corner_harris"可以知道使用的是C++写的,因为如果是Python写的,就是type="corner_harris.py"这样的形式,当然那里也注释说明了是corner_harris.cpp
其中C++代码文件的地址:ls /home/jetson/workspace/catkin_ws/build/opencv_apps
我们来看下这个哈里斯角点的实际代码:
gedit /home/jetson/workspace/catkin_ws/build/opencv_apps/corner_harris.cpp 

/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2016, Kentaro Wada.
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Kentaro Wada nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

#include <ros/ros.h>
#include <nodelet/loader.h>

int main(int argc, char **argv)
{
    ros::init(argc, argv, "corner_harris", ros::init_options::AnonymousName);
    if (ros::names::remap("image") == "image") {
        ROS_WARN("Topic 'image' has not been remapped! Typical command-line usage:\n"
                 "\t$ rosrun image_rotate image_rotate image:=<image topic> [transport]");
    }

    // need to use 1 worker thread to prevent freezing in imshow, calling imshow from mutiple threads
    //nodelet::Loader manager(false);
    ros::param::set("~num_worker_threads", 1); // need to call   Loader(bool provide_ros_api = true);
    nodelet::Loader manager(true);
    nodelet::M_string remappings;
    nodelet::V_string my_argv(argv + 1, argv + argc);
    my_argv.push_back("--shutdown-on-close"); // Internal

    manager.load(ros::this_node::getName(), "opencv_apps/corner_harris", remappings, my_argv);

    ros::spin();
    return 0;
}

这段代码就是初始化corner_harris节点,image话题的重映射等,然后用圆圈来标注角点,这个操作会用到接下来要讲的一个插件。

3.3、corner_harris_nodelet.cpp

上面的核心代码,会用到Nodelet,关于这个Nodelet插件的解释:
允许用户在ROS节点中添加自定义功能,Nodelet使得开发人员能够将复杂的代码封装到可重用的插件中,这些插件可以像其他ROS节点一样进行部署和通信,开发人员可以编写更加模块化和可维护的代码,提高ROS系统的可扩展性和可重用性。
更关键的是效率问题,Nodelet提供一种方法,可以让多个算法程序在一个进程中,使用共享指针shared_ptr来实现零拷贝通信,以降低因为拷贝传输大数据(比如图像流,点云等)而延迟的问题,换句话说就是将多个node捆绑在一起管理,使得同一个manager里面的话题的数据传输更快,因为不会在进程内传递消息时进行复制而产生的效率下降。 

查看插件文件:ls /home/jetson/workspace/catkin_ws/src/opencv_apps/src/nodelet
我们打开哈里斯角点的插件代码来看下:

gedit /home/jetson/workspace/catkin_ws/src/opencv_apps/src/nodelet/corner_harris_nodelet.cpp

 

// -*- coding:utf-8-unix; mode: c++; indent-tabs-mode: nil; c-basic-offset: 2; -*-
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2016, JSK Lab.
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Kei Okada nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
#include <ros/ros.h>
#include "opencv_apps/nodelet.h"
#include <image_transport/image_transport.h>
#include <sensor_msgs/image_encodings.h>
#include <cv_bridge/cv_bridge.h>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#include <dynamic_reconfigure/server.h>
#include "opencv_apps/CornerHarrisConfig.h"

// https://github.com/opencv/opencv/blob/master/samples/cpp/tutorial_code/TrackingMotion/cornerHarris_Demo.cpp
/**
 * @function cornerHarris_Demo.cpp
 * @brief Demo code for detecting corners using Harris-Stephens method
 * @author OpenCV team
 */

namespace opencv_apps
{
class CornerHarrisNodelet : public opencv_apps::Nodelet
{
  image_transport::Publisher img_pub_;
  image_transport::Subscriber img_sub_;
  image_transport::CameraSubscriber cam_sub_;
  ros::Publisher msg_pub_;

  boost::shared_ptr<image_transport::ImageTransport> it_;

  typedef opencv_apps::CornerHarrisConfig Config;
  typedef dynamic_reconfigure::Server<Config> ReconfigureServer;
  Config config_;
  boost::shared_ptr<ReconfigureServer> reconfigure_server_;

  int queue_size_;
  bool debug_view_;

  std::string window_name_;
  static bool need_config_update_;

  int threshold_;

  void reconfigureCallback(Config& new_config, uint32_t level)
  {
    config_ = new_config;
    threshold_ = config_.threshold;
  }

  const std::string& frameWithDefault(const std::string& frame, const std::string& image_frame)
  {
    if (frame.empty())
      return image_frame;
    return frame;
  }

  void imageCallbackWithInfo(const sensor_msgs::ImageConstPtr& msg, const sensor_msgs::CameraInfoConstPtr& cam_info)
  {
    doWork(msg, cam_info->header.frame_id);
  }

  void imageCallback(const sensor_msgs::ImageConstPtr& msg)
  {
    doWork(msg, msg->header.frame_id);
  }

  static void trackbarCallback(int /*unused*/, void* /*unused*/)
  {
    need_config_update_ = true;
  }

  void doWork(const sensor_msgs::ImageConstPtr& image_msg, const std::string& input_frame_from_msg)
  {
    // Work on the image.
    try
    {
      // Convert the image into something opencv can handle.
      cv::Mat frame = cv_bridge::toCvShare(image_msg, sensor_msgs::image_encodings::BGR8)->image;

      // Do the work
      cv::Mat dst, dst_norm, dst_norm_scaled;
      dst = cv::Mat::zeros(frame.size(), CV_32FC1);

      cv::Mat src_gray;

      if (frame.channels() > 1)
      {
        cv::cvtColor(frame, src_gray, cv::COLOR_BGR2GRAY);
      }
      else
      {
        src_gray = frame;
        cv::cvtColor(src_gray, frame, cv::COLOR_GRAY2BGR);
      }

      /// Detector parameters
      int block_size = 2;
      int aperture_size = 3;
      double k = 0.04;

      /// Detecting corners
      cv::cornerHarris(src_gray, dst, block_size, aperture_size, k, cv::BORDER_DEFAULT);

      /// Normalizing
      cv::normalize(dst, dst_norm, 0, 255, cv::NORM_MINMAX, CV_32FC1, cv::Mat());
      cv::convertScaleAbs(dst_norm, dst_norm_scaled);

      /// Drawing a circle around corners
      for (int j = 0; j < dst_norm.rows; j++)
      {
        for (int i = 0; i < dst_norm.cols; i++)
        {
          if ((int)dst_norm.at<float>(j, i) > threshold_)
          {
            cv::circle(frame, cv::Point(i, j), 5, cv::Scalar(0), 2, 8, 0);
          }
        }
      }

      /// Create window
      if (debug_view_)
      {
        cv::namedWindow(window_name_, cv::WINDOW_AUTOSIZE);
        const int max_threshold = 255;
        if (need_config_update_)
        {
          config_.threshold = threshold_;
          reconfigure_server_->updateConfig(config_);
          need_config_update_ = false;
        }
        cv::createTrackbar("Threshold:", window_name_, &threshold_, max_threshold, trackbarCallback);
      }

      if (debug_view_)
      {
        cv::imshow(window_name_, frame);
        int c = cv::waitKey(1);
      }

      // Publish the image.
      sensor_msgs::Image::Ptr out_img =
          cv_bridge::CvImage(image_msg->header, sensor_msgs::image_encodings::BGR8, frame).toImageMsg();
      img_pub_.publish(out_img);
    }
    catch (cv::Exception& e)
    {
      NODELET_ERROR("Image processing error: %s %s %s %i", e.err.c_str(), e.func.c_str(), e.file.c_str(), e.line);
    }
  }

  void subscribe()  // NOLINT(modernize-use-override)
  {
    NODELET_DEBUG("Subscribing to image topic.");
    if (config_.use_camera_info)
      cam_sub_ = it_->subscribeCamera("image", queue_size_, &CornerHarrisNodelet::imageCallbackWithInfo, this);
    else
      img_sub_ = it_->subscribe("image", queue_size_, &CornerHarrisNodelet::imageCallback, this);
  }

  void unsubscribe()  // NOLINT(modernize-use-override)
  {
    NODELET_DEBUG("Unsubscribing from image topic.");
    img_sub_.shutdown();
    cam_sub_.shutdown();
  }

public:
  virtual void onInit()  // NOLINT(modernize-use-override)
  {
    Nodelet::onInit();
    it_ = boost::shared_ptr<image_transport::ImageTransport>(new image_transport::ImageTransport(*nh_));

    pnh_->param("queue_size", queue_size_, 3);
    pnh_->param("debug_view", debug_view_, false);

    if (debug_view_)
    {
      always_subscribe_ = true;
    }

    window_name_ = "CornerHarris Demo";

    reconfigure_server_ = boost::make_shared<dynamic_reconfigure::Server<Config> >(*pnh_);
    dynamic_reconfigure::Server<Config>::CallbackType f =
        boost::bind(&CornerHarrisNodelet::reconfigureCallback, this, _1, _2);
    reconfigure_server_->setCallback(f);

    img_pub_ = advertiseImage(*pnh_, "image", 1);

    onInitPostProcess();
  }
};
bool CornerHarrisNodelet::need_config_update_ = false;
}  // namespace opencv_apps

namespace corner_harris
{
class CornerHarrisNodelet : public opencv_apps::CornerHarrisNodelet
{
public:
  virtual void onInit()  // NOLINT(modernize-use-override)
  {
    ROS_WARN("DeprecationWarning: Nodelet corner_harris/corner_harris is deprecated, "
             "and renamed to opencv_apps/corner_harris.");
    opencv_apps::CornerHarrisNodelet::onInit();
  }
};
}  // namespace corner_harris

#include <pluginlib/class_list_macros.h>
PLUGINLIB_EXPORT_CLASS(opencv_apps::CornerHarrisNodelet, nodelet::Nodelet);
PLUGINLIB_EXPORT_CLASS(corner_harris::CornerHarrisNodelet, nodelet::Nodelet);

主要关注其中检测角点的方法:

cv::cornerHarris(src_gray, dst, block_size, aperture_size, k, cv::BORDER_DEFAULT);

参数说明如下:

src_gray:输入的灰度Mat矩阵或浮点图像
dst:存储着哈里斯角点检测的结果,跟源图的尺寸和类型一样
block_size:邻域的大小
aperture_size:Sobel边缘检测滤波器大小
k:Harris中间参数,经验值0.04~0.06
cv::BORDER_DEFAULT:插值类型

我们也可以看到在发布和订阅时,用到的就是指针
发布时:

sensor_msgs::Image::Ptr out_img =cv_bridge::CvImage(image_msg->header, sensor_msgs::image_encodings::BGR8, frame).toImageMsg();
img_pub_.publish(out_img);

订阅时:

Nodelet::onInit();
it_ = boost::shared_ptr<image_transport::ImageTransport>(new image_transport::ImageTransport(*nh_));

if (config_.use_camera_info)
      cam_sub_ = it_->subscribeCamera("image", queue_size_, &CornerHarrisNodelet::imageCallbackWithInfo, this);
    else
      img_sub_ = it_->subscribe("image", queue_size_, &CornerHarrisNodelet::imageCallback, this);

这样我们在消息传递时,就只需要传指针了,当然这里是针对同一台设备的进程间通信,如果是不同设备那还是需要解引用传输实际内容,因为我们知道ROS的分布节点进行通信的协议是XML-RPC,本质也是HTTP协议,只不过编码格式是XML类型,它们之间的传输还得是拷贝内容进行通信。

查看节点关系:rqt_graph,我这里将调试节点隐藏,显得更清晰点,如下图:

OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测),机器人操作系统(ROS),Python,opencv_apps,rospy.get_param,corner_harris,hough_lines,contour_moments,LK光流

可以看到CSI摄像头图像获取需要经过转换之后最终通过/Image话题发布给哈里斯角点算法处理。 

识别角点的原理,简单来说就是在特征窗口里面,如果灰度发生了较大的变化,就认为这里是一个角点,有兴趣的可以查阅:harris.cpp

4、霍夫直线检测

接下来的部分,就没有上述那么去分析了,只是熟悉下常用的几个功能。
霍夫直线的检测在计算机视觉和图像处理中用途广泛,可以用于边缘检测、直线检测等。
实际场景中,可以通过从图像中检测出边缘,然后通过识别直线或曲线,将这些边缘连接起来,形成完整的物体。
另外无人驾驶的发展,对于自动化检测道路、车道线等应用也有着广泛的应用。
启动launch文件:roslaunch opencv_apps hough_lines.launch
很好的检测到了我身上的衣服以及上面的“中国”文字,如下图:

OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测),机器人操作系统(ROS),Python,opencv_apps,rospy.get_param,corner_harris,hough_lines,contour_moments,LK光流

5、图像轮廓矩

contour_moments.launch是启动识别图像中轮廓的矩函数,这里的轮廓矩也可以理解成轮廓的特征,它也有着很广泛的应用:
目标识别:提取图像中物体的轮廓特征,可以对目标进行识别和分类。
目标检测:通过检测物体的形状和轮廓,来确定目标的位置。
图像分割:因为可以对不同的区域进行目标的识别,所以也可以帮助其进行图像的分割。
医学领域:可以用来识别图像中的组织器官和患病部位,从而提取特征,进行医学的诊断。
启动:roslaunch opencv_apps contour_moments.launch,如下图:

OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测),机器人操作系统(ROS),Python,opencv_apps,rospy.get_param,corner_harris,hough_lines,contour_moments,LK光流

6、LK光流 

LK光流是描述目标运动的方法,利用LK光流可以实现对目标的追踪,从而知道目标的位姿。
LK光流法的前提条件如下:
亮度恒定:一个像素点随着时间的变化,其亮度值(像素灰度值)是不能变化的。
小运动:时间的变化不会引起位置的剧烈变化。这样才能利用相邻帧之间的位置变化引起的灰度值变化,去求取灰度对位置的偏导数。
空间一致:前一帧的相邻像素点在后一帧也是相邻的,因为为了求解x,y方向的速度,需要建立方程组,而空间一致假设就可以利用邻域n个像素点来建立n个方程。
启动:roslaunch opencv_apps lk_flow.launch,如下图:

OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测),机器人操作系统(ROS),Python,opencv_apps,rospy.get_param,corner_harris,hough_lines,contour_moments,LK光流

7、相机相位位移

检测相机移动的快慢,或者里面目标的运动快慢
启动:roslaunch opencv_apps phase_corr.launch,如下图:

OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测),机器人操作系统(ROS),Python,opencv_apps,rospy.get_param,corner_harris,hough_lines,contour_moments,LK光流

移动越快,圆就越大

大概的介绍就先到这儿吧,另外一些关于OpenCV的文章,有兴趣的可以查阅:
OpenCV自带的HAAR级联分类器对脸部(人脸、猫脸等)的检测识别
OpenCV的HSV颜色空间在无人车中颜色识别的应用文章来源地址https://www.toymoban.com/news/detail-755560.html

到了这里,关于OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CvBridge在ROS图像和OpenCV图像之间进行转化

    目录 1、概念 2、将ROS图像转化为OpenCV图像 3、将OpenCV图像转化为ROS图像消息 4、例子         ROS的 sensor_msgs/Image消息格式本身就是为了传递图像,但是因为因为不能直接传递给Opencv所以ROS提供了CvBridge来进行之间的转化。          本文章将教您学会如何编写节点,使用CvB

    2024年02月14日
    浏览(31)
  • 随手笔记——通过OpenCV获取图像转为ROS图像话题发布(C++版)

    通过OpenCV获取图像转为ROS图像话题发布 注:sensor_msgs::ImagePtr msg = cv_bridge::CvImage(std_msgs::Header(), “bgr8”, image).toImageMsg(); //核心代码

    2024年02月12日
    浏览(34)
  • 随手笔记——将ROS图像话题转为OpenCV图像格式处理后再转为ROS图像话题发布(C++版)

    将ROS图像话题转为OpenCV图像格式处理后再转为ROS图像话题发布,主要通过cv_bridge的toImageMsg()和toCvCopy()函数(C++版)。 ​ 代码来自wiki

    2024年02月12日
    浏览(42)
  • 【OpenCV-PyQt5-PyGame-imutils】探索Python中的图像和视频捕获:性能分析与选择指南

    随着计算机视觉和多媒体应用的不断发展,图像和视频捕获变得越来越重要。在Python中,有多种库和工具可供选择,用于打开摄像头、捕获图像、以及处理视频流。本文旨在为读者提供对这些捕获方法的全面了解,并介绍如何计算平均帧率以评估性能。 解释器环境创建方式基

    2024年02月07日
    浏览(41)
  • 2.ROS机器视觉——ROS图像(imgmsg)与opencv(cv2)对接

    参考: 古月学院和ROS机器人开发实践 目标 :实现ROS系统读取摄像头的图像,ROS读取的图像数据转化为opencv中的图像,opencv对接受的图像进行处理,最后返回给ROS系统可视化输出。 安装opencv库与相关的接口包 由于我用的ROS-Melodic版本,其中roscore只能在python2中执行,而视觉部

    2024年02月16日
    浏览(33)
  • Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 视频图像处理基础操作 之 视频捕获/存储/提取/合成/合并

    目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 视频图像处理基础操作 之 视频捕获/存储/提取/合成/合并 一、简单介绍 二、视频处理流程和原理 三、视频的捕获和存储 四、提取视频中的某些帧 五、将图片合成为视频 六、多个视频合并 Python是一种跨平台的计算机程序设计

    2024年04月10日
    浏览(114)
  • OpenCV 玩转图像和视频

    为什么学OpenCV? • OpenCV ⽀持对图像缩放、旋转、绘制⽂字图形等基础操作 • OpenCV 库包含了很多计算机视觉领域常⻅算法:⽬标检测、⽬标跟踪等 OpenCV 简介 • OpenCV (Open Source Computer Vision) 是计算机视觉和机器学习软件库 • Intel 1999年 创建,⽤C++语⾔编写(提供了Python、

    2024年02月12日
    浏览(25)
  • OpenCV 图像与视频的基础操作

    在计算机视觉领域,OpenCV是一款广泛使用的开源库,用于图像处理和计算机视觉任务。当你开始使用OpenCV时,了解如何创建和显示窗口,以及加载和保存图片是至关重要的基础知识。本文将介绍如何使用OpenCV进行这些操作,帮助你更好地掌握图像处理和视觉任务的开发技巧。

    2024年02月08日
    浏览(33)
  • 基于OpenCV的传统视觉应用 -- OpenCV图像处理 图像模糊处理 图像锐化处理

    图像处理是用计算机对图像进行分析,以获取所需结果的过程,又称为影像处理。图像处理一般是指数字图像的处理。数字图像是用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。 均值滤波是指任意一点的像素

    2024年02月07日
    浏览(68)
  • gocv读取gif多帧图像,mp4视频图像,opencv,VideoCaptureFile,opencv_ffmpeg

    读取GIF图像 opencv中无法读取gif图像,这是由于license原因。转而使用 videocapture 或者第三方的 PIL 库(Python),但是其实Golang的基础库 image 中就有读取gif图像的。于是一个简单的示例如下 这里只会播放一遍gif图像,我们还可以解析gif中的LoopCount来增加循环播放的逻辑。 读取

    2024年02月12日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包