贪心算法和动态规划

这篇具有很好参考价值的文章主要介绍了贪心算法和动态规划。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 文章来源地址https://www.toymoban.com/news/detail-755755.html

目录

一、简介

二、贪心算法案例:活动选择问题

1.原理介绍

三、动态规划案例:背包问题

1.原理介绍

四、贪心算法与动态规划的区别

五、总结


作者其他文章链接

正则表达式-CSDN博客

深入理解HashMap:Java中的键值对存储利器-CSDN博客

贪心算法和动态规划,贪心算法,动态规划,算法

 

一、简介

贪心算法和动态规划是两种非常强大的算法设计策略,它们在许多复杂问题中都展现出了出色的性能。在计算机科学中,它们被广泛应用于解决优化问题,如资源分配、路径寻找等。在这篇博客中,我们将通过具体的Java案例来探讨这两种算法的设计和应用,并详细比较它们的区别。

 

二、贪心算法案例:活动选择问题

1.原理介绍

贪心算法是一种通过每一步的最优选择,希望得到全局最优解的算法。它通常基于当前状态和局部信息做出决策,而没有对问题进行全面的扫描和分解。贪心算法的关键在于在每一步选择中,都选取当前状态下最好或最优(即最有利)的选择,从而希望通过每个局部最优的选择,能够导致全局最优解。

活动选择问题是一种常见的贪心算法应用场景,它要求从一系列活动中选择出最大数量的活动,以便在给定时间内完成。贪心算法的策略是每次选择当前最优的活动,希望通过每个局部最优的选择,能够达到全局最优解

public class ActivitySelection {  
    public static int selectActivities(int[] activityLengths, int[] activityStartTimes) {  
        int n = activityLengths.length;  
        int[] dp = new int[n];  
        int maxActivities = 0;  
        for (int i = 0; i < n; i++) {  
            int start = activityStartTimes[i];  
            int end = start + activityLengths[i];  
            for (int j = 0; j < i; j++) {  
                if (activityStartTimes[j] <= start && end <= activityStartTimes[j] + activityLengths[j]) {  
                    dp[i] = 0; // conflict  
                    break;  
                } else if (activityStartTimes[j] > start && end > activityStartTimes[j] && dp[j] == 1) {  
                    dp[i] = 0; // conflict  
                    break;  
                } else if (activityStartTimes[j] <= start && end >= activityStartTimes[j] + activityLengths[j]) {  
                    dp[i] = 1; // OK  
                } else {  
                    dp[i] = 0; // conflict  
                }  
            }  
            if (dp[i] == 1) {  
                maxActivities++;  
            }  
        }  
        return maxActivities;  
    }  
}

 

三、动态规划案例:背包问题

1.原理介绍

动态规划是一种通过将问题分解为若干个子问题,并存储子问题的解,以便重复使用的方法。它特别适用于解决需要优化递归的问题,通过将问题分解为更小的部分,并利用这些子问题的解来构建最终的解决方案。动态规划的关键在于记忆化,它通过存储并重复使用之前子问题的解,从而避免重复计算,提高了算法的效率。

背包问题是动态规划的经典案例。我们有一个背包,有一定的承载重量,现在有一些物品,每个物品都有自己的重量和价值。我们希望在不超过背包承载重量的前提下,选择一些物品放入背包,使得背包中物品的总价值最大。我们可以将这个问题分解为几个子问题:对于给定的背包容量,我们能选择哪些物品?对于这些物品,我们应该选择哪些物品放入背包以获得最大的价值?

public class Knapsack {  
    public static int knapSack(int W, int wt[], int val[], int n) {  
        int i, w;  
        int K[][] = new int[n+1][W+1];  
   
        for (i = 0; i <= n; i++) {  
            for (w = 0; w <= W; w++) {  
                if (i==0 || w==0) {  
                    K[i][w] = 0;  
                } else if (wt[i-1] <= w) {  
                    K[i][w] = Math.max(val[i-1] + K[i-1][w-wt[i-1]],  K[i-1][w]);  
                } else {  
                    K[i][w] = K[i-1][w];  
                }  
            }  
        }  
   
        return K[n][W];  
    }  
}

四、贪心算法与动态规划的区别

  1. 问题分解方式:贪心算法通常试图找到局部最优解,希望通过每个局部最优的选择,能够达到全局最优解。它通常没有对问题进行全面扫描和分解,而是基于当前状态和局部信息做出决策。而动态规划则是将问题分解为若干个子问题,并存储子问题的解,以便重复使用。它通过将问题分解为更小的部分,并利用这些子问题的解来构建最终的解决方案。
  2. 记忆化:动态规划的一个重要特点是记忆化。它通过存储并重复使用之前子问题的解,从而避免重复计算,提高了算法的效率。而贪心算法则通常没有这种记忆功能,它只关注当前状态和局部最优解。
  3. 全局优化:贪心算法通常只能保证局部最优,而无法保证全局最优。这是因为贪心算法在每一步都选择当前最优的选项,而不考虑这可能对全局产生的影响。而动态规划则通过解决子问题并整合答案,更有可能找到全局最优解。
  4. 适用场景:贪心算法在某些特定类型的问题上表现出色,例如活动选择、硬币找零等问题。而动态规划则更适用于解决复杂优化问题,如背包问题、旅行商问题等。
  5. 时间复杂度:在某些情况下,动态规划的时间复杂度可能高于贪心算法。这是因为动态规划需要解决和存储大量的子问题,而贪心算法则只需要考虑当前状态和局部信息。然而,对于一些特定问题,动态规划可能会提供更优的解决方案。

五、总结

贪心算法和动态规划是两种非常强大的算法设计策略,它们在许多复杂问题中都展现出了出色的性能。通过以上两个Java案例,我们可以看到它们在解决实际问题中的效果和优势。在选择使用贪心算法还是动态规划时,我们需要根据问题的性质、全局优化要求、计算资源等因素进行综合考虑。同时,深入理解这两种算法的工作原理和适用场景,将有助于我们在解决问题时选择合适的算法设计策略。

 

 

到了这里,关于贪心算法和动态规划的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 背包问题算法全解析:动态规划和贪心算法详解

    计算机背包问题是动态规划算法中的经典问题。本文将从理论和实践两个方面深入探讨计算机背包问题,并通过实际案例分析,帮助读者更好地理解和应用该问题。 背包问题是一种经典的优化问题。有的时候我们需要将有一堆不同重量或者体积的物品放入背包,但是背包容量

    2024年02月09日
    浏览(39)
  • 算法设计与分析实验:动态规划与贪心

    目录 一、零钱兑换 1.1 思路一:动态规划 1.2 思路二:贪心 二、安排工作以达到最大效益 2.1 具体思路 2.2 思路呈现 2.3 代码实现 2.4 复杂度分析 2.5 运行结果 三、雇佣k名工人的最低成本 3.1 具体思路 3.2 思路展示 3.3 代码实现 3.4 复杂度分析 3.5 运行结果 结尾语 “生活有意思的

    2024年02月19日
    浏览(39)
  • 数据结构与算法之贪心&动态规划

            一:思考         1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束 时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?电影的话 那肯定是最多加票价最高的,入场

    2024年02月09日
    浏览(39)
  • “算法详解”系列第3卷贪心算法和动态规划出版

    “算法详解”系列图书共有4卷,目前1到3卷已经出版。最新出版的是第3卷—贪心算法和动态规划。 “算法详解”系列图书共有4卷,本书是第3卷—贪心算法和动态规划。其中贪心算法主要包括调度、最小生成树、集群、哈夫曼编码等,动态规划主要包括背包、序列对齐、最短

    2024年02月13日
    浏览(26)
  • 01背包(动态规划,贪心算法,回溯法,分支限界法)

    有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? number=4,capacity=8 物品编号(i) W(体积) V(价值) 1 2 3 2 3 4 3 4 5 4 5 6 1.什么是动态规划 1.动态规划算法是通过拆分问题,定义问题状态和状态之间的关系, 使得

    2024年02月08日
    浏览(47)
  • 五大常用算法——分治法,动态规划,回溯法,分支界限法,贪心算法

    (1) 分治法 将一个难以直接解决的大问题,分割成一些规模较小的相同问题 快速排序 快排也是分治的一个实例,快排每一趟会选定一个数,将比这个数小的放左面,比这个数大的放右面, 然后递归分治求解两个子区间,当然快排因为在分的时候就做了很多工作, 当全部分到

    2024年02月04日
    浏览(29)
  • 华为OD机试题中 动态规划和贪心算法例题

    在 ACM 比赛中,有许多常见的编程算法和数据结构经常被使用。本系列博客会罗列各种常见算法,以及其代表性例题。 这部分内容可以用于类似华为 OD 机考学习。 动态规划是一种将复杂问题分解为简单子问题并使用子问题的解来构建更大问题的方法。它通常用于解决最长公

    2024年01月16日
    浏览(36)
  • (软考-软件设计师.下午)动态规划算法、回溯算法、贪心算法、分治算法的应用

    :【递归技术】【二分查找】 分治法的设计思路: 将一个难以直接解决的 大问题 分解成一些 规模较小 的相同问题以便于 逐个击破,分而治之 。      由代码可以看出二分查找也属于分治法的一种,关于二分查找,这位博主总结的很详细。  :【查表】   动

    2024年02月06日
    浏览(35)
  • 【地铁上的面试题】--基础部分--数据结构与算法--动态规划和贪心算法

    一、动态规划的基本概念和思想 1.1 动态规划的定义和特点 动态规划是一种解决多阶段决策问题的算法思想,它通过将问题划分为若干个子问题,并保存子问题的解来求解原问题的方法。动态规划的特点包括以下几个方面: 最优子结构性质:动态规划问题具有最优子结构,即

    2024年02月12日
    浏览(44)
  • 算法思想—枚举、递推、迭代、递归、分治、贪心、动态规划、回溯、模拟、分支定界

    算法思想 枚举(暴力算法) 枚举算法(暴力算法)是一种通过逐一尝试所有可能解来解决问题的算法。它的基本思想是将问题的所有可能答案一一列举出来,并根据一定的判断条件来确定哪些答案是合适的。这种算法通常使用循环来实现,因为需要尝试所有可能的情况。两

    2024年02月01日
    浏览(27)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包