【算法优选】 动态规划之斐波那契数列模型

这篇具有很好参考价值的文章主要介绍了【算法优选】 动态规划之斐波那契数列模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🎋前言

动态规划相关题目都可以参考以下五个步骤进行解答:

  1. 状态表⽰

  2. 状态转移⽅程

  3. 初始化

  4. 填表顺序

  5. 返回值

后面题的解答思路也将按照这五个步骤进行讲解。

🍀第 N 个泰波那契数

🚩题目描述

泰波那契序列 Tn 定义如下:

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

  • 示例 1:
    输入:n = 4
    输出:4
    解释:
    T_3 = 0 + 1 + 1 = 2
    T_4 = 1 + 1 + 2 = 4

  • 示例 2:
    输入:n = 25
    输出:1389537

class Solution {
    public int tribonacci(int n) {

    }
}

🚩算法流程

  1. 状态表⽰:

这道题可以「根据题⽬的要求」直接定义出状态表⽰:
dp[i] 表⽰:第 i 个泰波那契数的值。

  1. 状态转移⽅程:

题⽬已经⾮常贴⼼的告诉我们了:
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

  1. 初始化:

从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因为 dp[-2] 或 dp[-1] 不是⼀个有效的数据。因此我们需要在填表之前,将 0, 1, 2 位置的值初始化。题⽬中已经告诉我们 dp[0] = 0,dp[1] = dp[2] = 1 。

  1. 填表顺序:

毫⽆疑问是「从左往右」。

  1. 返回值:

应该返回 dp[n] 的值。

🚩代码实现

class Solution {
    public int tribonacci(int n) {
        int[] dp = new int[n + 3];
        dp[0] = 0;
        dp[1] = 1;
        dp[2] = 1;
        for(int i = 0; i <  n; i++) {
            dp[i + 3] = dp[i] + dp[i + 1] + dp[i + 2];
        }
        return dp[n];
    }
}

🎄使用最小花费爬楼梯

🚩题目描述

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

  • 示例 1:
    输入:cost = [10,15,20]
    输出:15
    解释:你将从下标为 1 的台阶开始。
    -支付 15 ,向上爬两个台阶,到达楼梯顶部。
    总花费为 15 。
  • 示例 2:
    输入:cost = [1,100,1,1,1,100,1,1,100,1]
    输出:6
    解释:你将从下标为 0 的台阶开始。
    -支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
    -支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
    -支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
    -支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
    -支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
    -支付 1 ,向上爬一个台阶,到达楼梯顶部。
    总花费为 6 。
class Solution {
    public int minCostClimbingStairs(int[] cost) {

    }
}

🚩算法思路

🎈解法⼀:

  1. 状态表⽰:

这道题可以根据「经验+题⽬要求」直接定义出状态表⽰:
第⼀种:以 i 位置为结尾,然后一系列操作
dp[i] 表⽰:到达 i 位置时的最⼩花费。(注意:到达 i 位置的时候, i 位置的钱不需要算上)

  1. 状态转移⽅程:

根据最近的⼀步,分情况讨论:
▪ 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置:dp[i - 1] + csot[i - 1] ;
▪ 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置:dp[i - 2] + csot[i - 2] 。

  1. 初始化:

从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到 dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。

  1. 填表顺序:

根据「状态转移⽅程」可得,遍历的顺序是「从左往右」。

  1. 返回值:

根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

🎈解法⼆:

  1. 状态表⽰:

这道题可以根据「经验+题⽬要求」直接定义出状态表⽰:第⼆种:以 i 位置为起点,进行一系列操作。
dp[i] 表⽰:从 i 位置出发,到达楼顶,此时的最⼩花费。

  1. 状态转移⽅程:

根据最近的⼀步,分情况讨论:
▪ ⽀付 cost[i] ,往后⾛⼀步,接下来从 i + 1 的位置出发到终点: dp[i + 1] + cost[i] ;
▪ ⽀付 cost[i] ,往后⾛两步,接下来从 i + 2 的位置出发到终点: dp[i + 2] + cost[i] ;
我们要的是最⼩花费,因此 dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i] 。

  1. 初始化:

为了保证填表的时候不越界,我们需要初始化最后两个位置的值,结合状态表⽰易得: dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2]

  1. 填表顺序:

根据「状态转移⽅程」可得,遍历的顺序是「从右往左」。

  1. 返回值:

根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。也就是dp[0]与dp[1]中的较小值

🚩代码实现:

解法一:

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        int[] dp = new int[n + 1];
        for(int i = 2; i <= n; i++) {
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[n];
    }
}

解法二:

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int n = cost.length;
        int[] dp = new int[n];
        dp[n - 1] = cost[n - 1]; dp[n - 2] = cost[n - 2];
        for(int i = n - 3; i >= 0; i--) {
            dp[i] = Math.min(dp[i + 1], dp[i + 2]) + cost[i];
        }
        return Math.min(dp[0], dp[1]);
    }
}

🌲解码方法

🚩题目描述

一条包含字母 A-Z 的消息通过以下映射进行了 编码 :

‘A’ -> “1”
‘B’ -> “2”

‘Z’ -> “26”
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:

“AAJF” ,将消息分组为 (1 1 10 6)
“KJF” ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。

给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。

题目数据保证答案肯定是一个 32 位 的整数。

  • 示例 1:
    输入:s = “12”
    输出:2
    解释:它可以解码为 “AB”(1 2)或者 “L”(12)。

  • 示例 2:
    输入:s = “226”
    输出:3
    解释:它可以解码为 “BZ” (2 26), “VF” (22 6), 或者 “BBF” (2 2 6) 。

  • 示例 3:
    输入:s = “06”
    输出:0
    解释:“06” 无法映射到 “F” ,因为存在前导零(“6” 和 “06” 并不等价)。

class Solution {
    public int numDecodings(String s) {

    }
}

🚩算法思路

类似于斐波那契数列~

  1. 状态表⽰:

根据以往的经验,对于⼤多数线性 dp ,我们经验上都是「以某个位置结束或者开始」做⽂章,这⾥我们继续尝试「⽤i位置为结尾」结合「题⽬要求」来定义状态表⽰。dp[i] 表⽰:字符串中 [0,i] 区间上,⼀共有多少种编码⽅法。

  1. 状态转移⽅程:

定义好状态表⽰,我们就可以分析 i 位置的 dp 值,如何由「前⾯」或者「后⾯」的信息推导出
来。

关于 i 位置的编码状况,我们可以分为下⾯两种情况:

  • 让 i 位置上的数单独解码成⼀个字⺟;
  • 让 i 位置上的数与 i - 1 位置上的数结合,解码成⼀个字⺟。

下⾯我们就上⾯的两种解码情况,继续分析:

    • 让i位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:
      • 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就可以了。此时 dp[i] = dp[i - 1] ;
      • 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0 。
    • 让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:
      • 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ]区间上的解码⽅法,原因同上。此时dp[i] = dp[i - 2] ;
      • 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 …这⼏种情况),那么此时 [0, i] 区间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0 。

综上所述: dp[i] 最终的结果应该是上⾯四种情况下,解码成功的两种的累加和(因为我们关⼼的是解码⽅法,既然解码失败,就不⽤加⼊到最终结果中去),因此可以得到状态转移⽅程( dp[i] 默认初始化为 0 ):

  • 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1] ;
  • 当 s[i - 1] 与 s[i] 上的数结合后,在 [10, 26] 之间的时候: dp[i] += dp[i - 2] ;

如果上述两个判断都不成⽴,说明没有解码⽅法, dp[i] 就是默认值 0 。

  1. 初始化:
  • ⽅法⼀(直接初始化):
    由于可能要⽤到 i - 1 以及 i - 2 位置上的 dp 值,因此要先初始化「前两个位置」。
    初始化 dp[0] :
    • 当 s[0] == ‘0’ 时,没有编码⽅法,结果 dp[0] = 0 ;
    • 当 s[0] != ‘0’ 时,能编码成功, dp[0] = 1

初始化 dp[1] :

    • 当 s[1] 在 [1,9] 之间时,能单独编码,此时 dp[1] += dp[0] (原因同上,dp[1] 默认为 0 )
    • 当 s[0] 与 s[1] 结合后的数在 [10, 26] 之间时,说明在前两个字符中,⼜有⼀种编码⽅式,此时 dp[1] += 1
  • ⽅法⼆(添加辅助位置初始化):
    可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:

    • 辅助结点⾥⾯的值要保证后续填表是正确的;
    • 下标的映射关系
  1. 填表顺序:

毫⽆疑问是「从左往右」

  1. 返回值:

应该返回 dp[n - 1] 的值,表⽰在 [0, n - 1] 区间上的编码⽅法。

🚩代码实现

class Solution {

    public int numDecodings(String ss) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int n = ss.length();
        char[] s = ss.toCharArray();
        int[] dp = new int[n];
        if(s[0] != '0') {
            dp[0] = 1; // 初始化第⼀个位置
        }
        if(n == 1) {
            return dp[0]; // 处理边界情况
        }
        // 初始化第⼆个位置
        if(s[1] != '0' && s[0] != '0') {
            dp[1] += 1;
        }
        int t = (s[0] - '0') * 10 + s[1] - '0';
        if(t >= 10 && t <= 26) {
            dp[1] += 1;
        }
        for(int i = 2; i < n; i++) {
            // 先处理第⼀种情况
            if(s[i] != '0') {
                dp[i] += dp[i - 1];
            }
            // 处理第⼆种情况
            int tt = (s[i - 1] - '0') * 10 + s[i] - '0';
            if(tt >= 10 && tt <= 26) {
                dp[i] += dp[i - 2];
            }
        }
        return dp[n - 1];
    }
}

代码优化如下:

class Solution {

    public int numDecodings(String ss) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int n = ss.length();
        char[] s = ss.toCharArray();
        int[] dp = new int[n + 1];
        dp[0] = 1; // 保证后续填表是正确的
        if(s[1 - 1] != '0') dp[1] = 1;
        for(int i = 2; i <= n; i++) {
            // 先处理第⼀种情况
            if(s[i - 1] != '0') {
                dp[i] += dp[i - 1];
            }
            // 处理第⼆种情况
            int tt = (s[i - 2] - '0') * 10 + s[i - 1] - '0';
            if(tt >= 10 && tt <= 26) {
                dp[i] += dp[i - 2]; 
            }
        }
        return dp[n];
    }
}

⭕总结

关于《【算法优选】 动态规划之斐波那契数列模型》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!文章来源地址https://www.toymoban.com/news/detail-755807.html

到了这里,关于【算法优选】 动态规划之斐波那契数列模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【动态规划专栏】专题一:斐波那契数列模型--------1.第N个泰波那契数

    本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:动态规划专栏 🚚代码仓库:小小unicorn的代码仓库🚚

    2024年02月21日
    浏览(31)
  • 动态规划入门:斐波那契数列模型以及多状态(C++)

        动态规划(Dynamic programming,简称 DP)是一种解决多阶段决策问题的算法思想。它将问题分解为多个阶段,并通过保存中间结果来避免重复计算,从而提高效率。 动态规划的解题步骤一般分为以下几步: 思考状态表示,创建dp表(重点) 分析出状态转移方程(重点) 初始化 确定

    2024年02月11日
    浏览(31)
  • 动态规划入门篇——斐波那契数列与爬楼梯问题

           动态规划(Dynamic Programming,简称DP)是运筹学的一个分支,也是求解多阶段决策过程最优化问题的一种方法。它主要用来解决一类最优化问题,通过将复杂问题分解成若干个子问题,并综合子问题的最优解来得到原问题的最优解。动态规划的核心在于对问题的状态进

    2024年03月14日
    浏览(29)
  • 【动态规划专栏】专题一:斐波那契数列模型--------2.三步问题

    本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:动态规划专栏 🚚代码仓库:小小unicorn的代码仓库🚚

    2024年02月21日
    浏览(33)
  • Java【动态规划】斐波那契数列模型, 图文思路详解 + 代码实现

    本篇总结动态规划中的 斐波那契数列模型 的解法和思路 按照以下流程进行分析题目和代码编写 思路分析步骤 代码编写步骤 1, 状态表示 1, 构造 dp 表 2, 状态转移方程 2, 初始化+边界处理 3, 初始化 3, 填表(抄状态转移方程) 4, 填表顺序 4, 返回结果 5, 返回值 / OJ链接 题目分析

    2024年02月08日
    浏览(39)
  • DAY42:动态规划(二)斐波那契数列+爬楼梯+最小花费爬楼梯

    斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: 给定 n ,请计算 F(n) 。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 30 思路:动规五步 确定dp数组和数组下标含义 DP题目都需要定义一维

    2024年02月13日
    浏览(43)
  • (动态规划) 剑指 Offer 10- I. 斐波那契数列 ——【Leetcode每日一题】

    难度:简单 写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N) )。斐波那契数列的定义如下: F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N 1. 斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。 答案需要取模 1e9+7(1000000007),如计

    2024年02月12日
    浏览(36)
  • 算法:动态规划---斐波那契和最短路径

    从本篇开始总结的是动态规划的一些内容,动态规划是算法中非常重要的一个版块,因此也是学习算法中的一个重点,在学习动态规划前应当要把动态规划的基础知识学习一下 动态规划既然是一个新的算法,这个名字也是新名字,那么就要首先明确这个算法的名字代表什么含

    2024年01月25日
    浏览(38)
  • 解锁动态规划:从斐波那契到高效算法

    👤作者介绍:10年大厂数据经营分析经验,现任大厂数据部门负责人。 会一些的技术:数据分析、算法、SQL、大数据相关、python 欢迎加入社区:码上找工作 作者专栏每日更新: LeetCode解锁1000题: 打怪升级之旅 python数据分析可视化:企业实战案例 备注说明:方便大家阅读,

    2024年04月15日
    浏览(31)
  • 代码随想录Day32 动态规划01 LeetCodeT509 斐波那契数列 T70 爬楼梯 T746 爬楼梯的最小消耗

    动态规划首先可以解决的问题有背包问题,打家劫舍问题,股票问题,子序列问题等,主要是将一个大的问题切分成多个重叠的子问题,所以动态规划一定是上一个状态递推过来的,有一个重要的 状态转移方程, 但是这也并不是解题的全部,我们将动态规划的题目基本分为五步来完成

    2024年02月06日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包