【数据结构(七)】查找算法

这篇具有很好参考价值的文章主要介绍了【数据结构(七)】查找算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


查找算法介绍

在 java 中,我们常用的查找有四种:
    ① 顺序(线性)查找
    ② 二分查找/折半查找
    ③ 插值查找
    ④ 斐波那契查找

1. 线性查找算法

问题:
    数组arr[] = {1, 9, 11, -1, 34, 89},使用线性查找方式,找出11所在的位置。

代码实现:

package search;

public class SeqSearch {
    public static void main(String[] args) {
        int arr[] = { 1, 9, 11, -1, 34, 89 };// 没有顺序的数组
        int index = seqSearch(arr, 11);

        if (index == -1) {
            System.out.println("没有找到");
        } else {
            System.out.println("找到了,下标为:" + index);
        }

    }

    /**
     * 这里实现的线性查找是找到一个满足条件的值,就返回
     * 
     * @param arr
     * @param value
     * @return
     */
    public static int seqSearch(int[] arr, int value) {
        // 线性查找是逐一比对,发现有相同的值,就返回下标
        for (int i = 0; i < arr.length; i++) {
            if (arr[i] == value) {
                return i;
            }
        }
        return -1;
    }

}

运行结果:

【数据结构(七)】查找算法,Java数据结构,算法,数据结构,java

2. 二分查找算法

问题:
    请对一个有序数组进行二分查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"。

2.1. 思路分析

二分查找的思路分析

  1. 首先,确定该数组的中间的下标: m i d = ( l e f t + r i g h t ) / 2 mid = (left + right) / 2 mid=(left+right)/2

  2. 然后让需要查找的数 findValarr[mid] 比较
    2.1. findVal > arr[mid],说明你要查找的数在mid 的右边, 因此需要递归的向右查找
    2.2. findVal < arr[mid],说明你要查找的数在mid 的左边, 因此需要递归的向左查找
    2.3. findVal == arr[mid],说明找到,就返回

  3. 什么时候需要结束递归:
    ①找到就结束递归
    ②递归完整个数组,仍然没有找到findVal,也需要结束递归 当 left > right 就需要退出

2.2. 代码实现

注意:使用二分查找的前提是 该数组是有序的

package search;

public class BinarySearch {
    public static void main(String[] args) {
        int arr[] = { 1, 8, 10, 89, 1000, 1234 };

        int resIndex = binarySearch(arr, 0, arr.length - 1, 1);

        System.out.println("resIndex= " + resIndex);
    }

    // 二分查找法
    /**
     * 
     * @param arr     数组
     * @param left    左边的索引
     * @param right   右边的索引
     * @param findVal 要查找的值
     * @return 如果找到就返回下标,如果没有找到就返回-1
     */
    public static int binarySearch(int[] arr, int left, int right, int findVal) {

        // 当left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return -1;
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) {// 向右递归
            return binarySearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) {
            return binarySearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }
    }

}

运行结果:

【数据结构(七)】查找算法,Java数据结构,算法,数据结构,java

2.3. 功能拓展

问题:
    数组{1,8, 10, 89, 1000, 1000,1234}, 当一个有序数组中,有多个相同的数值时,如何将所有的数值都查找到,比如这里的 1000。

代码实现:

package search;

import java.util.ArrayList;
import java.util.List;

public class BinarySearch {
    public static void main(String[] args) {
        int arr[] = { 1, 8, 10, 89, 1000, 1000, 1234 };

        List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, 1000);
        
        System.out.println("resIndexList = " + resIndexList);
    }


    /*
     * 思路分析:
     * 1. 在找 mid 的索引值,不要马上返回
     * 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
     * 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
     * 4. 将 ArrayList 返回
     */
    public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {

        // 当left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return new ArrayList<Integer>();
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) {// 向右递归
            return binarySearch2(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) {
            return binarySearch2(arr, left, mid - 1, findVal);
        } else {
            /*
             * 思路分析:
             * 1. 在找 mid 的索引值,不要马上返回
             * 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
             * 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
             * 4. 将 ArrayList 返回
             */
            List<Integer> resIndexlist = new ArrayList<Integer>();
            // 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            int temp = mid - 1;
            while (true) {
                if (temp < 0 || arr[temp] != findVal) {// 退出
                    break;
                }
                // 否则,就将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp -= 1;// temp左移
            }
            resIndexlist.add(mid);

            // 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            temp = mid + 1;
            while (true) {
                if (temp > arr.length - 1 || arr[temp] != findVal) {// 退出
                    break;
                }
                // 否则,就将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp += 1;// temp左移
            }
            return resIndexlist;

        }
    }

}

运行结果:

【数据结构(七)】查找算法,Java数据结构,算法,数据结构,java

3. 插值查找算法

3.1. 前言

二分查找算法存在查找效率较慢的情况,因为其中的mid是从中间开始取的。假如对数组{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 }进行查找,查找 1 所在的位置,实现代码如下:

package search;

import java.util.ArrayList;
import java.util.List;

public class BinarySearch {
    public static void main(String[] args) {

        int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 };

        List<Integer> resIndexList = binarySearch2(arr, 0, arr.length - 1, 1);
        System.out.println("resIndexList = " + resIndexList);
    }


    /*
     * 思路分析:
     * 1. 在找 mid 的索引值,不要马上返回
     * 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
     * 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
     * 4. 将 ArrayList 返回
     */
    public static List<Integer> binarySearch2(int[] arr, int left, int right, int findVal) {

        System.out.println("调用了一次");

        // 当left > right 时,说明递归整个数组,但是没有找到
        if (left > right) {
            return new ArrayList<Integer>();
        }
        int mid = (left + right) / 2;
        int midVal = arr[mid];

        if (findVal > midVal) {// 向右递归
            return binarySearch2(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) {
            return binarySearch2(arr, left, mid - 1, findVal);
        } else {
            /*
             * 思路分析:
             * 1. 在找 mid 的索引值,不要马上返回
             * 2. 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
             * 3. 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
             * 4. 将 ArrayList 返回
             */
            List<Integer> resIndexlist = new ArrayList<Integer>();
            // 向 mid 索引值的左边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            int temp = mid - 1;
            while (true) {
                if (temp < 0 || arr[temp] != findVal) {// 退出
                    break;
                }
                // 否则,就将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp -= 1;// temp左移
            }
            resIndexlist.add(mid);

            // 向 mid 索引值的右边扫描,将所有满足1000的元素的下标,加入到集合ArrayList
            temp = mid + 1;
            while (true) {
                if (temp > arr.length - 1 || arr[temp] != findVal) {// 退出
                    break;
                }
                // 否则,就将temp放入到resIndexlist
                resIndexlist.add(temp);
                temp += 1;// temp左移
            }
            return resIndexlist;

        }
    }

}

运行结果:

【数据结构(七)】查找算法,Java数据结构,算法,数据结构,java

总共调用了4次才查找出1的索引值,效率较慢。通过插值查找可改善上述问题。

3.2. 相关概念

原理介绍:
    插值查找算法类似于二分查找,不同的是插值查找每次从自适应 mid 处开始查找。

mid的计算公式:
    对二分查找中的求 mid 索引的公式进行修改:
【数据结构(七)】查找算法,Java数据结构,算法,数据结构,java

上图公式中:
① low 表示左边索引 left
② high 表示右边索引 right
③ key 就是前面二分查找中讲的 findVal(要查找的值)

即插值查找的 mid计算公式
m i d = l o w + ( h i g h − l o w ) k e y − a r r [ l o w ] a r r [ h i g h ] − a r r [ l o w ] \begin{aligned} &mid = low + (high-low)\frac{key-arr[low]}{arr[high]-arr[low]} \end{aligned} mid=low+(highlow)arr[high]arr[low]keyarr[low]
对应前面的代码公式,即:
m i d = l e f t + ( r i g h t – l e f t ) f i n d V a l – a r r [ l e f t ] a r r [ r i g h t ] – a r r [ l e f t ] \begin{aligned} &mid = left + (right – left)\frac{findVal – arr[left]}{arr[right] – arr[left]} \end{aligned} mid=left+(rightleft)arr[right]arr[left]findValarr[left]

举例说明:
    
    数组 arr = [1, 2, 3, …, 100]
    
①假如需要查找的值是 1
    (使用二分查找的话,需要多次递归,才能找到 1 的下标0)
    使用插值查找算法:
m i d = l e f t + ( r i g h t – l e f t ) f i n d V a l – a r r [ l e f t ] a r r [ r i g h t ] – a r r [ l e f t ] \begin{aligned}&mid = left + (right – left)\frac{findVal – arr[left]}{arr[right] – arr[left]}\end{aligned} mid=left+(rightleft)arr[right]arr[left]findValarr[left]
即:
m i d = 0 + ( 99 − 0 ) 1 − 1 100 − 1 = 0 + 99 ∗ 0 99 = 0     ( 直接定位到下标 0 ) \begin{aligned}&mid = 0+(99-0)\frac{1-1}{100-1} = 0 + 99 * \frac{0}{99} = 0\ \ \ (直接定位到下标0)\end{aligned} mid=0+(990)100111=0+99990=0   (直接定位到下标0)
②假如需要查找的值是 100
m i d = 0 + ( 99 − 0 ) 100 − 1 ( 100 − 1 = 0 + 99 ∗ 99 99 = 0 + 99 = 99     ( 直接定位到下标 99 ) \begin{aligned}&mid =0 + (99 - 0)\frac{100 - 1}{(100 - 1} = 0 + 99 * \frac{99}{99} = 0 + 99 = 99\ \ \ (直接定位到下标99)\end{aligned} mid=0+(990)(10011001=0+999999=0+99=99   (直接定位到下标99)

3.3. 实例应用

问题:
    对数组 arr = [1, 2, 3, …, 100] ,使用插值查找算法,找到 1 的索引值(下标)

代码实现:

package search;

import java.util.Arrays;

public class InsertValueSearch {
    public static void main(String[] args) {
        int[] arr = new int[100];

        for (int i = 0; i < 100; i++) {
            arr[i] = i + 1;
        }

        int index = insertValueSearch(arr, 0, arr.length - 1, 1);
        System.out.println("index = " + index);

        // System.out.println(Arrays.toString(arr));
    }

    // 编写插值查找算法
    // 说明:插值查找算法也要求数组是有序的
    /**
     * 
     * @param arr     数组
     * @param left    左边索引
     * @param right   右边索引
     * @param findVal 要查找的值
     * @return 如果找到,就返回对应的下标;如果没有找到,就返回-1
     */
    public static int insertValueSearch(int[] arr, int left, int right, int findVal) {

        System.out.println("查找了一次");
        // 注意:findVal < arr[0] 和 findVal > arr[arr.length - 1] 必须需要,否则得到的mid可能越界
        if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
            return -1;
        }

        // 求出 mid
        int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
        int midVal = arr[mid];

        if (findVal > midVal) {// 说明应该向右边递归
            return insertValueSearch(arr, mid + 1, right, findVal);
        } else if (findVal < midVal) {// 说明应该向左递归
            return insertValueSearch(arr, left, mid - 1, findVal);
        } else {
            return mid;
        }

    }

}

运行结果:

【数据结构(七)】查找算法,Java数据结构,算法,数据结构,java

注意事项:

  1. 对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找, 速度较快.
  2. 关键字分布不均匀的情况下,该方法不一定比折半(二分)查找要好

4. 斐波那契(黄金分割法)查找算法

    
    黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是 0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意想不到的效果。

    斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … … } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618。

4.1. 斐波那契(黄金分割法)原理

    斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid 不再是中间或插值得到,而是位于黄金分割点附近,即 m i d = l o w + F [ k − 1 ] − 1 mid=low+F[k-1]-1 mid=low+F[k1]1 F F F 代表斐波那契数列),如下图所示:

【数据结构(七)】查找算法,Java数据结构,算法,数据结构,java

对 F(k-1)-1 的理解:

  1. 由斐波那契数列 F [ k ] = F [ k − 1 ] + F [ k − 2 ] F[k]=F[k-1]+F[k-2] F[k]=F[k1]+F[k2] 的性质,可以得到 ( F [ k ] − 1 ) = ( F [ k − 1 ] − 1 ) + ( F [ k − 2 ] − 1 ) + 1 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 (F[k]1)=(F[k1]1)+(F[k2]1)+1 。该式说明:只要顺序表的长度为 F[k]-1,则可以将该表分成长度为 F [ k − 1 ] − 1 F[k-1]-1 F[k1]1 F [ k − 2 ] − 1 F[k-2]-1 F[k2]1 的两段,即如上图所示。从而中间位置为 m i d = l o w + F [ k − 1 ] − 1 mid=low+F[k-1]-1 mid=low+F[k1]1
  2. 类似的,每一子段也可以用相同的方式分割
  3. 但顺序表长度 n n n 不一定刚好等于 F [ k ] − 1 F[k]-1 F[k]1,所以需要将原来的顺序表长度 n n n 增加至 F [ k ] − 1 F[k]-1 F[k]1。这里的 k k k 值只要能使得 F [ k ] − 1 F[k]-1 F[k]1 恰好大于或等于 n n n 即可,由以下代码得到,顺序表长度增加后,新增的位置(从 n + 1 n+1 n+1 F [ k ] − 1 F[k]-1 F[k]1 位置),都赋为 n n n 位置的值即可。

while(n>fib(k)-1)
  k++;

4.2. 实例应用

问题:
    请对一个有序数组进行斐波那契查找 {1,8, 10, 89, 1000, 1234} ,输入一个数看看该数组是否存在此数,并且求出下标,如果没有就提示"没有这个数"(return = -1)。

代码实现:

package search;

import java.util.Arrays;

public class FibonacciSearch {

    public static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = { 1, 8, 10, 89, 1000, 1234 };

        System.out.println("index = " + fibSearch(arr, 89));
    }

    // 因为后面我们mid=low+F(k-1)-1,需要使用斐波那契数列,因此我们需要先获取到一个斐波那契数列
    // 非递归方法得到一个斐波那契数列
    public static int[] fib() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    // 编写斐波那契查找算法
    // 使用非递归的方式编写算法
    /**
     * 
     * @param a   数组
     * @param key 需要查找的关键字(值)
     * @return 返回对应的下标,如果没有,就返回-1
     */
    public static int fibSearch(int[] a, int key) {
        int low = 0;
        int high = a.length - 1;
        int k = 0;// 表示斐波那契分割数值的下标
        int mid = 0;// 存放mid值
        int f[] = fib();// 获取到斐波那契数列

        // 获取到斐波那契分割数值的下标
        while (high > f[k] - 1) {
            k++;
        }

        // 因为f[k]的值 可能大于a的长度,因此需要使用Arrays类,构造一个新的数组,并指向a[]
        // 不足的部分会使用0填充
        int[] temp = Arrays.copyOf(a, f[k]);
        // 实际上,需要使用a数组的最后的数填充temp
        // 举例:
        // temp = {1,8,10,89,1000,1234,0,0,0} --> {1,8,10,89,1000,1234,1234,1234,1234}
        for (int i = high + 1; i < temp.length; i++) {
            temp[i] = a[high];
        }

        // 使用while循环处理,找到key
        while (low <= high) {// 只要这个条件满足,就可以找
            mid = low + f[k - 1] - 1;
            if (key < temp[mid]) {// 继续向数组的前面查找(左边)
                high = mid - 1;
                // 为什么是k--?
                // 说明:
                // 1. 全部元素=前面的元素+后面的元素
                // 2. f[k] = f[k-1] + f[k-2]
                // 因为 前面有f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
                // 即 在f[k-1]的前面继续查找(k--)
                // 即 下次循环的 mid = f[k-1-1]-1
                k--;
            } else if (key > temp[mid]) {// 继续向数组的后面查找(右边)
                low = mid + 1;
                // 为什么是 k -= 2
                // 说明
                // 1. 全部元素=前面的元素+后面的元素
                // 2. f[k] = f[k-1] + f[k-2]
                // 因为 后面有f[k-2]个元素,所以可以继续拆分 f[k-2] = f[k-3] + f[k-4]
                // 即 在f[k-2]的后面继续查找(k-=2)
                // 即 下次循环的 mid = f[k-1-2]-1
                k -= 2;
            } else {// 找到
                // 需要确定,返回的是哪一个下标
                if (mid <= high) {
                    return mid;
                } else {
                    return high;
                }

            }
        }
        return -1;

    }

}

运行结果:

【数据结构(七)】查找算法,Java数据结构,算法,数据结构,java文章来源地址https://www.toymoban.com/news/detail-756198.html

到了这里,关于【数据结构(七)】查找算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Java学数据结构(2)——树Tree & 二叉树binary tree & 二叉查找树 & AVL树 & 树的遍历

    1.树的出现:解决链表线性访问时间太慢,树的时间复杂度O(logN); 2.二叉树的定义,最多两个儿子节点; 3.二叉查找树,左小,右大,中居中;remove方法,两种,只有一个儿子节点,有两个儿子节点; 4.AVL树,在二叉查找树基础上加平衡条件,旋转方法,单旋转,双旋转;

    2024年02月10日
    浏览(49)
  • 数据结构--》掌握数据结构中的查找算法

            当你需要从大量数据中查找某个元素时,查找算法就变得非常重要。         无论你是初学者还是进阶者,本文将为你提供简单易懂、实用可行的知识点,帮助你更好地掌握查找在数据结构和算法中的重要性,进而提升算法解题的能力。接下来让我们开启数据

    2024年02月08日
    浏览(57)
  • 【数据结构(七)】查找算法

    在 java 中,我们常用的查找有四种:     ① 顺序(线性)查找     ② 二分查找/折半查找     ③ 插值查找     ④ 斐波那契查找 问题:     数组arr[] = {1, 9, 11, -1, 34, 89},使用线性查找方式,找出11所在的位置。 代码实现: 运行结果: 问题:     请

    2024年02月04日
    浏览(50)
  • 数据结构--6.3查找算法(静态、动态)(插值查找)

    静态查找:数据集合稳定,不需要添加,删除元素的查找操作。 动态查找:数据集合在查找的过程中需要同时添加或删除元素的查找操作。 对于静态查找来说,我们不妨可以用线性表结构组织数据,这样可以使用顺序查找算法,如果我们在对进行排序,则可以使用折

    2024年02月09日
    浏览(43)
  • 数据结构与算法:树形查找

    左子树结点值 根结点值 右子树结点值 对二叉排序树进行中序遍历,可以得到一个递增的有序数列 原理: 对于一个给定的二叉排序树,如果要查找一个节点,可以按照以下步骤进行: 从根节点开始比较。 如果要查找的值等于当前节点的值,则找到了目标节点,返回该节点。

    2024年02月06日
    浏览(43)
  • Java 数据结构与算法-树

    树的基础知识 树是算法面试经常遇到的数据结构之一,在实际工作中也有可能经常用到…… 应聘者在准备算法面试时最需要重视的是二叉树…… 二叉树是一种典型的具有递归性质的数据结构。二叉树的根节点可能有子节点,子节点又是对应子树的根节点,它可能也有自己的

    2024年02月08日
    浏览(54)
  • java入门,程序=数据结构+算法

    一、前言 在学习java的时候,我印象最深的一句话是:程序=数据结构+算法,对于写java程序来说,这就是java的入门。 二、java基本数据结构与算法 1、数据类型 java中的数据类型8种基本数据类型: 整型 byte 、short 、int 、long 浮点型 float 、 double 字符型 char 布尔型 boolean 还有包

    2024年02月05日
    浏览(61)
  • java数据结构与算法:栈

    代码: 测试: 链表头为堆栈顶 代码: 测试:

    2024年01月21日
    浏览(53)
  • 数据结构与算法之查找: 顺序查找 (Javascript版)

    顺序查找 思路 遍历数组 找到跟目标值相等元素,就返回它的下标 没有找到,返回-1 算法实现 总结 非常低效,算是入门搜索 时间复杂度:O(n) 对于数组结构或链表结构而言,没什么太多可说的

    2024年02月05日
    浏览(49)
  • 数据结构,查找算法(二分,分块,哈希)

    一、查找算法         1、二分查找:(前提条件: 必须有序的序列) 2、分块查找:(块间有序,块内无序)     索引表  +  源数据表     思路:     (1)先在索引表中确定在哪一块中     (2)再遍历这一块进行查找 //索引表 typedef  struct  {     int max; //块中最大值

    2024年02月11日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包