矩阵知识补充

这篇具有很好参考价值的文章主要介绍了矩阵知识补充。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

正交矩阵

定义: 正交矩阵是一种满足 A T A = E A^{T}A=E ATA=E的方阵
正交矩阵具有以下几个重要性质:

  • A的逆等于A的转置,即 A − 1 = A T A^{-1}=A^{T} A1=AT
  • **A的行列式的绝对值等于1,即 ∣ d e t ( A ) ∣ = 1 |det(A)|=1 det(A)=1
  • 正交矩阵的行向量和列向量都是单位正交向量组,也就是说,它们的长度都是 1,而且两两垂直
  • 正交矩阵的特征值都是模长为 1 的复数,即它们都在单位圆上。
  • 正交矩阵的乘积仍然是正交矩阵,即如果 A 和 B 都是正交矩阵,那么 AB 也是正交矩阵

eg:
[ 0 1 0 1 0 0 0 0 1 ] \begin{bmatrix} & 0& 1& 0 & \\ &1& 0& 0 & \\ &0& 0& 1 & \end{bmatrix} 010100001

对角矩阵

定义: 对角矩阵是一种特殊的方阵,它的非对角元素都为零,只有主对角线上的元素可能不为零
性质:
-对角矩阵的逆矩阵等于主对角线上元素的倒数

eg:
[ 1 0 0 0 2 0 0 0 3 ] \begin{bmatrix} & 1& 0& 0 & \\ &0& 2& 0 & \\ &0& 0& 3 & \end{bmatrix} 100020003

对称矩阵

定义: 特殊的方阵,它的转置矩阵与自身相等,也就是说,它的元素以主对角线为对称轴对应相等
性质:

  • 对称矩阵的特征值都是实数
  • 特征向量都是正交的
  • 可以通过相似变换对角化
  • 其逆矩阵也是对称矩阵

eg:
[ 1 2 3 2 2 5 3 5 3 ] \begin{bmatrix} & 1& 2& 3 & \\ &2& 2& 5 & \\ &3& 5& 3 & \end{bmatrix} 123225353

正定矩阵

定义: 给定一个大小为 n × n n \times n n×n的实对称矩阵A,对于任意长度为n的非零向量x,有 X T A x > 0 X^{T}Ax>0 XTAx>0恒成立,则矩阵A是一个正定矩阵

  • 其逆矩阵也是对称矩阵
    矩阵知识补充,矩阵,线性代数

不正定矩阵

定义: 给定一个大小为 n × n n \times n n×n的实对称矩阵A,对于任意长度为n的非零向量x,有 X T A x ≥ 0 X^{T}Ax \ge 0 XTAx0恒成立,则矩阵A是一个半正定矩阵

补充知识

单位正交向量组

正交向量组是一组非零的两两正交(即内积为0)的向量构成的向量组

求行列式的绝对值

矩阵知识补充,矩阵,线性代数文章来源地址https://www.toymoban.com/news/detail-756386.html

到了这里,关于矩阵知识补充的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数——求逆矩阵

    利用计算技巧凑出公式:两边加E、提取公因式、没有公因式可提时利用隐形的E=AA^(-1),因为E可看作系数1 主对角线有矩阵(副对角线是0矩阵),则分别逆后放在原位置 副对角线有矩阵(主对角线是0矩阵),则分别逆后互换位置

    2024年02月11日
    浏览(52)
  • 线性代数基础【2】矩阵

    一、基本概念 ①矩阵 像如下图示的为矩阵,记为A=(aij)m*n ②同型矩阵及矩阵相等 若A、B为如下两个矩阵 如果A和B的行数和列数相等,那么A和B为同型矩阵,且A和B的元素相等(即:aij=bij),则称A和B相等 ③伴随矩阵 设A为n阶矩阵(如上图所示),设A的行列式|A|,则A中aij的余子式为Mij,代数余

    2024年02月04日
    浏览(52)
  • 线性代数_对称矩阵

    对称矩阵是线性代数中一种非常重要的矩阵结构,它具有许多独特的性质和应用。下面是对称矩阵的详细描述: ### 定义 对称矩阵,即对称方阵,是指一个n阶方阵A,其转置矩阵等于其本身,即A^T = A。这意味着方阵A中的元素满足交换律,即对于任意的i和j(i ≤ j),都有A[

    2024年02月02日
    浏览(45)
  • 投影矩阵推导【线性代数】

    如果两个向量垂直,那么满足。但如果两个向量不垂直,我们就将 b 投影到 a 上,就得到了二者的距离,我们也称为向量 b 到直线 a 的误差。这样就有出现了垂直:                (1) 投影向量 p 在直线上,不妨假设  ,那么误差 。带入式(1)中得到: 投影矩阵:  

    2024年02月06日
    浏览(57)
  • 线性代数基础--矩阵

     矩阵是由排列在矩形阵列中的数字或其他数学对象组成的表格结构。它由行和列组成,并且在数学和应用领域中广泛使用。 元素:矩阵中的每个数字称为元素。元素可以是实数、复数或其他数学对象。 维度:矩阵的维度表示矩阵的行数和列数。一个 m × n 的矩阵有 m 行和

    2024年02月11日
    浏览(46)
  • 线性代数3:矩阵

    目录 矩阵研究的是什么呢? 逆阵 什么叫做逆阵?  例题1:  例题2:  逆阵的存在性 定理1: 定理2: 定理3: 定理4: 拉普拉茨方程 方阵可以的条件  例题3:  Note1: 例题4  Note2:  Note3: Note4:  Note5:  Note6: Note7:  例题5:  逆矩阵的求法: 方法1:伴随矩阵法:  方

    2024年02月13日
    浏览(55)
  • 线性代数:矩阵的定义

    目录 一、定义 二、方阵 三、对角阵 四、单位阵 五、数量阵  六、行(列)矩阵  七、同型矩阵 八、矩阵相等 九、零矩阵 十、方阵的行列式

    2024年01月22日
    浏览(39)
  • 线性代数-矩阵的本质

    线性代数-矩阵的本质

    2024年02月11日
    浏览(44)
  • 线性代数(七) 矩阵分析

    从性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。 通过这个定义我们就定义了矩阵序列的 收敛性 。 研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。 长度是范数的一个特例。事实上,Frobenius范数对

    2024年02月08日
    浏览(47)
  • 线性代数:矩阵的秩

    矩阵的秩(Rank)是线性代数中一个非常重要的概念,表示一个矩阵的行向量或列向量的线性无关的数量,通常用 r ( A ) r(boldsymbol{A}) r ( A ) 表示。具体来说: 对于一个 m × n mtimes n m × n 的实矩阵 A boldsymbol{A} A ,它的行秩 r ( A ) r(boldsymbol{A}) r ( A ) 定义为 A boldsymbol{A} A 的各

    2024年02月07日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包