【Python数据结构与算法】线性结构小结

这篇具有很好参考价值的文章主要介绍了【Python数据结构与算法】线性结构小结。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【Python数据结构与算法】线性结构小结,数据结构与算法,python学习,python,开发语言,人工智能,算法,数据结构,线性回归,链表

🌈个人主页: Aileen_0v0
🔥系列专栏:PYTHON学习系列专栏
💫"没有罗马,那就自己创造罗马~"  

目录

线性数据结构Linear DS

1.栈Stack

栈的两种实现

1.左为栈顶,时间复杂度为O(n)

2.右为栈顶,时间复杂度O(1)  

2.队列Queue

3.双端队列Deque

4.列表List

5.链表

a.无序链表的实现

b.有序链表的实现


【Python数据结构与算法】线性结构小结,数据结构与算法,python学习,python,开发语言,人工智能,算法,数据结构,线性回归,链表

线性数据结构Linear DS

作用:将数据项以某种线性的次序组织起来

1.栈Stack

  • 【Python数据结构与算法】线性结构小结,数据结构与算法,python学习,python,开发语言,人工智能,算法,数据结构,线性回归,链表

栈Stack维持了数据项后进先出LIFO的次序
stack基本操作包括push,pop,isEmpty

栈的两种实现

1.左为栈顶,时间复杂度为O(n)
#左边为顶,右边为低
class Stack:
    def __init__(self):
        self.items = []
 
    def isEmpty(self):
        return self.items == []
 
    def push(self,item):
        self.items.insert(0,item)
 
    def pop(self):
        return self.items.pop(0)
 
    def peek(self):
        return self.items[0]
 
    def size(self):
        return len(self.items)
2.右为栈顶,时间复杂度O(1)  
# 左边为低,右边为顶--->更高效
class Stack:#Stack---->ADT
    def __init__(self):
        self.items =[]
 
    def isEmpty(self):
        return self.items == []
 
# 满足这些属性(行为)的是栈
    def push(self,item):
        self.items.append(item)
 
    def pop(self):
        return self.items.pop()
 
    def peek(self):
        return self.items[len(self.items)-1]
 
    #
    def size(self):
        return len(self.items)
 
s = Stack()

链接👉: 

2.队列Queue

【Python数据结构与算法】线性结构小结,数据结构与算法,python学习,python,开发语言,人工智能,算法,数据结构,线性回归,链表
队列Queue维持了数据项先进先出FIFO的次序
queue基本操作包括enqueue, dequeue,isEmpty 有助于构建时序模拟

书写表达式的方法前缀prefix、中缀infix和后缀postfix三种由于栈结构具有次序反转的特性,所以栈结构适合用于开发表达式求值和转换的算法
“模拟系统”可以通过一个对现实世界问题进行抽象建模,并加入随机数动态运行为复杂问题的决策提供各种情况的参考队列queue可以用来进行模拟系统的开发

【Python数据结构与算法】线性结构小结,数据结构与算法,python学习,python,开发语言,人工智能,算法,数据结构,线性回归,链表

【Python数据结构与算法】线性结构小结,数据结构与算法,python学习,python,开发语言,人工智能,算法,数据结构,线性回归,链表

 链接👉:

3.双端队列Deque

双端队列Deque可以同时具备栈和队列的功能

deque的主要操作包括addFront,addRear, removeFront, removeRear, isEmpty

#创建一个双端队列(Dequeue)
class Dequeue:
    #定义一个初始化函数然后创建一个空列表用于传递数据items
    def __init__(self):
        self.items = []
 
    #判断列表是否为空
    def isEmpty(self):
        return self.items == []
 
     #在队首加入元素items
    def addFront(self,item):
        self.items.append(item)
 
    #在队尾加入元素items
    def addRear(self,item):
        self.items.insert(0,item)
 
 
    #从队首移除数据,返回值为移除数据项
    def removeFront(self):
        return self.items.pop()
 
    #从队尾移除数据,返回移除数据项
    def removeRear(self):
        return self.items.pop(0)
 
    #判断列表是否为空
    def isEmpty(self):
        return self.items == []
 
    #返回Dequeue中包含的数据项的个数
    def size(self):
        return len(self.items)
 
#palindrome - 回文检查
def  pal_checker (ps):
    #实例化对象
    d = Dequeue()
    for char in  ps:
        d.addRear(char)
 
    #假设元素左右相等
    still_equal = True
    #依次取出首尾元素进行判断,然后再判断它是否满足 :
    # 奇数个元素的时候,双端队列里面还剩下一个元素
    #偶数个元素的时候,双端队列里面没有元素
    while d.size() > 1 and still_equal :
        #从队首取出一个元素
        first = d.removeFront()
        #从队尾取出一个元素
        last = d.removeRear()
        if first != last:
            still_equal = False
    return still_equal
 
print(pal_checker ("上海自来水来自海上"))
print(pal_checker ("110110"))

链接👉: 

4.列表List

列表List是数据项能够维持相对位置的数据集

# 通过链表实现 无序表-列表
#列表 和 链表 都是无序表 unordered list
#实现链表
class Node:
    def __init__(self,init_data):
        self.data = init_data
        self.next = None
    #获得数据项
    def get_data(self):
        return self.data
    #获得节点
    def get_next(self):
        return self.next
    #设置数据项
    def set_data(self,new_data):
        self.data = new_data
    #设置节点
    def set_next(self,new_next):
        self.next = new_next
 
#结点示例
temp = Node(93)
print(temp.get_data())

链接👉: 

5.链表

链表的实现可以保持列表维持相对位置(保证逻辑顺序)的特点,而不需要连续的存储空间
链表实现时,其各种方法,对链表头部head需要特别的处理 

a.无序链表的实现

# 通过链表实现 无序表-列表
#列表 和 链表 都是无序表 unordered list
#实现链表 -- 链表相当于火车(顺藤摸瓜结构,如果放在链表后面,找那个车厢需要从头开始往后找)
class Node:#结点Node相当于车厢
    def __init__(self,init_data):
        self.data = init_data
        self.next = None
    #获得数据项
    def get_data(self):
        return self.data
    #获得节点
    def get_next(self):
        return self.next
    #设置数据项
    def set_data(self,new_data):
        self.data = new_data#属性
    #设置节点
    def set_next(self,new_next):
        self.next = new_next#属性

#结点示例
temp = Node(93)
temp2 = Node(17)
temp3 = Node(77)
print(temp.get_data())
print(temp2.get_data())
print(temp3.get_data())


# 链表:1.有序表 2.无序表
#链表实现: 无序表 UnorderedList
#设立一个属性head , 保存对对第一个节点的引用
#空表的 head 为 None
class UnorderedList:
    def __init__(self):
        self.head = None
# mylist = UnorderedList()
# print (mylist.head)

    #为item数据项生成一个结点-Node 叫做item
    def add(self,item):
        #然后将这个结点命名为临时变量
        temp = Node(item)
        #将下一个临时结点设置为表头
        temp.set_next(self.head)
        #表头指向新增加的临时结点
        self.head = temp

    def size(self):
        #当前节点设为表头第一个节点
        current = self.head
        count = 0
        while current != None:
            count += 1
            #将当前节点设为下一个结点的结点,循环往复
            current = current.get_next()
                #返回结点的个数
        return count

    def search(self,item):
        current = self.head
        found = False
        while current != None and not found:
            #判断当前节点数据项是否等于我想要找的数据
            if current.get_data() == item:
                found = True
            else:
                current = current.get_next()
        return found

    def remove(self,item):#删除找到的元素--引用两个指针当前和上继指针
        current = self.head
        previous = None
        found = False
        #先判断是不是我要找的那个元素
        while not found:
            if current.get_data == item:
                found = True
            else:
                #通过current的指针给初始没有指针的previous指路
                previous = current
                #然后current指针继续往下走
                current = current.get_next

# 如果中间位置找不到,那我们再判断表头
#当前删除的车厢部位值item 位于头部时,可以利用 previous 指向空
        if previous == None:#当前想要删除的是不是车头处的元素
            self.head = current.get_next()
        else:
            previous.set_next(current.get_next())#删除的是中间元素

    def traverse(self):
        current = self.head
        while current != None:
            print(current.get_data())
            current = current.get_next()

#实例化无序表:
ll  = UnorderedList()

# 加入新节点
ll.add(7)
ll.add(9)
ll.add(6)
ll.add(8)
ll.add(10)

print(ll.search(1000))
ll.traverse()

b.有序链表的实现

class Node:#结点Node相当于车厢
    def __init__(self,init_data):
        self.data = init_data
        self.next = None
    #获得数据项
    def get_data(self):
        return self.data
    #获得节点
    def get_next(self):
        return self.next
    #设置数据项
    def set_data(self,new_data):
        self.data = new_data#属性
    #设置节点
    def set_next(self,new_next):
        self.next = new_next#属性

class Orderedlist:
    def __init__(self):
        self.head = None

    def search(self,item):
        current = self.head
        found = False
        stop = False
        while current != None and not found and not stop:
            if current.get_data() == item:
                found = True
            else:
                if current.get_data()  > item:
                    stop = True
                else:
                    current = current.get_next()
        return found

    def add(self,item):
        current = self.head#指针1
        previous = None#p2
        stop = False
        while current != None and not stop:
            #发现插入位置
            if current.get_data() > item:
                stop = True
            else:
                previous = current
                current = current.get_next()

        temp = Node(item)
        #插在表头
        if previous == None:
            temp.set_next(self.head)
            self.head = temp
        #插在表中
        else:
            temp.set_next(current)
            previous.set_next(temp)

    def size(self):
        current = self.head
        count = 0
        while current != None:
            count += 1
            current = current.get_next()
        return count


    def remove(self, item):
        current = self.head
        previous = None
        found = False
        while not found and current != None:
            if current.get_data() == item:
                found = True
            else:
                previous = current
                current = current.get_next()
        if found:
            if previous == None:
                self.head = current.get_next()
            else:
                previous.set_next(current.get_next())

    def traverse(self):
        current = self.head
        while current != None:
            print(current.get_data())
            current = current.get_next()

ol = Orderedlist()
ol.add(7)
ol.add(9)
ol.add(6)
ol.add(8)
ol.add(10)
print(ol.search(6))
ol.traverse()

链接👉:文章来源地址https://www.toymoban.com/news/detail-756821.html

到了这里,关于【Python数据结构与算法】线性结构小结的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python数据结构与算法-数据结构(列表、栈、队列、链表)

    数据结构是指相互之间存在这一种或者多种关系的数据元素的集合和该集合中元素之间的关系组成。 简单来说,数据结构就是设计数据以何种方式组织并存储在计算机中。 比如:列表、集合与字典等都是一种数据结构。 N.Wirth:“程序=数据结构+算法” 数据结构按照其 逻辑结

    2024年02月08日
    浏览(57)
  • Python数据结构与算法-树

    详情见 https://blog.csdn.net/little_limin/article/details/129845592 Python数据结构与算法-堆排序(NB组)—— 一、树的基础知识 树结构也是链式存储的,与链表的结构相似,只是树存在多个子节点,不是线性的,存在一堆多的情况。与双链表相似,只不过链表节点对应的下一个节点只有一

    2023年04月15日
    浏览(37)
  • 数据结构与算法 - 线性表

    编程要求 本关任务是实现 step1/Seqlist.cpp 中的SL_InsAt、SL_DelAt和SL_DelValue三个操作函数,以实现线性表中数据的插入、删除与查找等功能。具体要求如下: SL_InsAT: 在顺序表的位置i插入结点x,即插入d[i]之前,i的有效范围[0,slist-len]; SL_DelAt:删除顺序表slist的第i号结点, i的有

    2024年02月01日
    浏览(88)
  • Rust 数据结构与算法:2线性数据结构 之 栈

    1、线性数据结构 数组、栈、队列、双端队列、链表这类数据结构都是保存数据的容器,数据项之间的顺序由添加或删除时的顺序决定,数据项一旦被添加,其相对于前后元素就会一直保持位置不变,诸如此类的数据结构被称为线性数据结构。线性数据结构有两端,称为“左

    2024年02月21日
    浏览(48)
  • python算法与数据结构---动态规划

    记不住过去的人,注定要重蹈覆辙。 对于一个模型为n的问题,将其分解为k个规模较小的子问题(阶段),按顺序求解子问题,前一子问题的解,为后一子问题提供有用的信息。在求解任一子问题时,通过决策求得局部最优解,依次解决各子问题。最后通过简单的判断,得到

    2024年02月20日
    浏览(75)
  • 【数据结构与算法_01_线性表】线性表

    定义 ● 线性表 具有相同数据类型**(同类型)**的n个数据元素有限序列 ● 三方面 ● 定义 逻辑结构 ● 相同数据类型 ● 每个数据元素所占的空间相同 ● 有限 ● 有限个元素 ● 序列 ● 是有次序的 ● 基本操作 操作— 基本操作 运算 ● 创建线性表【initList(L)】 ● 初始化线

    2024年02月11日
    浏览(37)
  • 数据结构与算法【02】—线性表

    CSDN系列专栏:数据结构与算法专栏 针对以前写的数据结构与算法系列重写(针对文字描述、图片、错误修复),改动会比较大,一直到更新完为止 通过前面数据结构与算法基础知识我们知道了数据结构的一些概念和重要性,那么本章总结下线性表相关的内容。当然,我用自己

    2024年02月05日
    浏览(51)
  • 数据结构与算法Python版:基数排序

    简介 :基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog®m),其中

    2024年01月24日
    浏览(42)
  • 数据结构与算法之Python实现——队列

    在上一期博客中我们学习了栈这种结构,本期博客将学习一下跟栈很类似的一种结构——队列。 本期知识点: 顺序队列 循环队列 链式队列 队列的应用 ⚪️ 什么是队列? 队列是一种跟栈很相似的结构。我们知道栈是一种 先进后出 的结构,那么队列就像一个排队的队伍一样

    2024年02月06日
    浏览(45)
  • 【数据结构与算法】python实现二分查找

    二分查找 又称折半查找,它是一种效率较高的查找方法 原理:首先,假设表中元素是按升序排列,将表中间位置记录的与查找比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的大于查找,则

    2024年02月05日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包