Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话

这篇具有很好参考价值的文章主要介绍了Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在本文中,可以将自己的数据与 Azure OpenAI 模型配合使用。 对数据使用 Azure OpenAI 模型可以提供功能强大的对话 AI 平台,从而实现更快、更准确的通信。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人文章来源地址https://www.toymoban.com/news/detail-757017.html

Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话,azure,机器学习,microsoft,人工智能,深度学习

环境准备

  • Azure 订阅 - 免费创建订阅。

  • 已在所需的 Azure 订阅中授予对 Azure OpenAI 的访问权限。

    Azure OpenAI 服务需要注册,并且目前仅供经批准的企业客户与合作伙伴使用。

  • 已部署聊天模型的 Azure OpenAI 资源(例如 GPT-3 或 GPT-4)。

  • 聊天模型可以使用版本 gpt-35-turbo (0301)gpt-35-turbo-16kgpt-4gpt-4-32k

  • 请确保至少为 Azure OpenAI 资源分配了[认知服务参与者]角色。

使用 Azure OpenAI Studio 添加数据

Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话,azure,机器学习,microsoft,人工智能,深度学习
导航到 Azure OpenAI Studio,然后使用有权访问 Azure OpenAI 资源的凭据登录。 在登录过程中或登录之后,选择适当的目录、Azure 订阅和 Azure OpenAI 资源。

  1. 选择“Chat Playground”磁贴。

Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话,azure,机器学习,microsoft,人工智能,深度学习

  1. 在“助手设置”磁贴上,选择“添加数据(预览)”>“+ 添加数据源”。
    Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话,azure,机器学习,microsoft,人工智能,深度学习
  2. 在显示的窗格中,选择“选择数据源”下的“上传文件”。 选择“上传文件”。 Azure OpenAI 需要存储资源和搜索资源来访问数据并编制数据索引。

3.1. 要使 Azure OpenAI 访问存储帐户,需要启用跨原点资源共享 (CORS)。 如果尚未为 Azure Blob 存储资源启用 CORS,请选择“启用 CORS”。

3.2. 选择 Azure AI 搜索资源,然后选择确认以表明知晓连接该资源将使用你的帐户。 然后,选择“下一步”。

Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话,azure,机器学习,microsoft,人工智能,深度学习

  1. 在“上传文件”窗格中,选择“浏览文件”,并选择要上传的文件。 然后选择“上传文件”。 然后,选择“下一步”。

  2. 在“数据管理”窗格中,可以选择为索引启用[语义搜索还是向量搜索]。

  3. 查看输入的详细信息,然后选择“保存并关闭”。 现在,你可以与模型聊天,模型将使用数据中的信息来构造响应。

Chat Playground

Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话,azure,机器学习,microsoft,人工智能,深度学习
通过Chat Playground使用开始使用无代码方法浏览 Azure OpenAI 功能。 这是一个简单的文本框,可以在其中提交提示以生成补全内容。 在此页中,可以快速循环访问和试验这些功能。

Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话,azure,机器学习,microsoft,人工智能,深度学习

可以试验温度和预响应文本等配置设置,以提高任务的性能。 可以在 [REST API]中详细了解每个参数。

  • 选择“生成”按钮后会将输入的文本发送到补全 API,并将结果流式传输回到文本框中。
  • 选择“撤消”按钮可以撤消上一次生成调用。
  • 选择“重新生成”按钮可以同时执行撤消和生成调用。

部署模型

对 Azure OpenAI 工作室中的体验感到满意后,可以通过选择“部署到”按钮直接从工作室部署 Web 应用。
Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话,azure,机器学习,microsoft,人工智能,深度学习
这让你可以选择将模型部署为独立的 Web 应用程序,或者如果要在模型上使用[你自己的数据],则可以使用 Power Virtual Agents。

例如,如果选择部署 Web 应用:

首次部署 Web 应用时,应选择“创建新的 Web 应用”。 为应用选择一个名称,该名称将成为应用 URL 的一部分。 例如,https://<appname>.azurewebsites.net

为已发布的应用选择订阅、资源组、位置和定价计划。 要更新现有应用,请选择“发布到现有 Web 应用”,然后从下拉菜单中选择上一个应用的名称。

使用Python调用

要成功地对 Azure OpenAI 进行调用,需要使用以下变量。 本快速入门假定已将数据上传到 Azure Blob 存储帐户,并且已创建 Azure AI 搜索索引。

变量名称
AOAIEndpoint 在从 Azure 门户检查 Azure OpenAI 资源时,可在“密钥 & 终结点”部分中找到此值。 也可在“Azure AI 工作室”>“聊天操场”>“代码视图”中查找该值。 示例终结点为:https://my-resoruce.openai.azure.com
AOAIKey 在 Azure 门户检查 Azure OpenAI 资源时,可在“资源管理>密钥 & 终结点”部分中找到此值。 可以使用 KEY1KEY2。 始终准备好两个密钥可以安全地轮换和重新生成密钥,而不会导致服务中断。
AOAIDeploymentId 此值将对应于在部署模型时为部署选择的自定义名称。 可在 Azure 门户中的“资源管理”>“部署”下,或者在 Azure AI 工作室中的“管理”>“部署”下查找此值。
SearchEndpoint 在 Azure 门户检查 Azure AI 搜索资源时,可在“概览”部分中找到此值。
SearchKey 在 Azure 门户检查 Azure AI 搜索资源时,可在“设置>密钥”部分中找到此值。 你可以使用主要管理密钥或辅助管理密钥。 始终准备好两个密钥可以安全地轮换和重新生成密钥,而不会导致服务中断。
SearchIndex 此值对应于为存储数据而创建的索引的名称。 在从 Azure 门户检查 Azure AI 搜索资源时,可以在“概述”部分找到它。

环境变量

  • [命令行]
setx AOAIEndpoint REPLACE_WITH_YOUR_AOAI_ENDPOINT_VALUE_HERE
setx AOAIKey REPLACE_WITH_YOUR_AOAI_KEY_VALUE_HERE
setx AOAIDeploymentId REPLACE_WITH_YOUR_AOAI_DEPLOYMENT_VALUE_HERE
setx SearchEndpoint REPLACE_WITH_YOUR_AZURE_SEARCH_RESOURCE_VALUE_HERE
setx SearchKey REPLACE_WITH_YOUR_AZURE_SEARCH_RESOURCE_KEY_VALUE_HERE
setx SearchIndex REPLACE_WITH_YOUR_INDEX_NAME_HERE

创建 Python 环境

  1. 为项目新建一个名为 openai-pytho 的文件夹,并且新建一个名为 main.py 的 Python 代码文件。 更改到该目录:
mkdir openai-python
cd openai-python
  1. 安装以下 Python 库:
  • [OpenAI Python 1.x]
pip install openai
pip install python-dotenv

创建 Python 应用

  1. 从项目目录中,打开 main.py 文件并添加以下代码:
  • [OpenAI Python 1.x]
import os
import openai
import dotenv

dotenv.load_dotenv()

endpoint = os.environ.get("AOAIEndpoint")
api_key = os.environ.get("AOAIKey")
deployment = os.environ.get("AOAIDeploymentId")

client = openai.AzureOpenAI(
    base_url=f"{endpoint}/openai/deployments/{deployment}/extensions",
    api_key=api_key,
    api_version="2023-08-01-preview",
)

completion = client.chat.completions.create(
    model=deployment,
    messages=[
        {
            "role": "user",
            "content": "How is Azure machine learning different than Azure OpenAI?",
        },
    ],
    extra_body={
        "dataSources": [
            {
                "type": "AzureCognitiveSearch",
                "parameters": {
                    "endpoint": os.environ["SearchEndpoint"],
                    "key": os.environ["SearchKey"],
                    "indexName": os.environ["SearchIndex"]
                }
            }
        ]
    }
)

print(completion.model_dump_json(indent=2))
  1. 运行以下命令:
python main.py

应用程序以适合在许多场景下使用的 JSON 格式打印响应。 它包含对来自已上传文件的查询和引文的答案。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人

到了这里,关于Azure Machine Learning - 使用自己的数据与 Azure OpenAI 模型对话的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • Azure Machine Learning - 使用 REST API 创建 Azure AI 搜索索引

    Azure Machine Learning - 使用 REST API 创建 Azure AI 搜索索引

    本文介绍如何使用 Azure AI 搜索 REST AP和用于发送和接收请求的 REST 客户端以交互方式构建请求。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理

    2024年02月04日
    浏览(11)
  • Azure Machine Learning - Azure AI 搜索中的集成数据分块和嵌入

    Azure Machine Learning - Azure AI 搜索中的集成数据分块和嵌入

    在基于索引器的索引编制中,Azure AI _集成矢量化_将数据分块和文本到矢量嵌入添加到技能中,它还为查询添加文本到矢量的转换。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,

    2024年02月05日
    浏览(9)
  • Azure Machine Learning - 视频AI技术

    Azure Machine Learning - 视频AI技术

    Azure AI 视频索引器是构建在 Azure 媒体服务和 Azure AI 服务(如人脸检测、翻译器、Azure AI 视觉和语音)基础之上的一个云应用程序,是 Azure AI 服务的一部分。 有了 Azure 视频索引器,就可以使用 Azure AI 视频索引器视频和音频模型从视频中提取见解。 Azure AI 视频索引器通过运行

    2024年01月20日
    浏览(9)
  • Azure Machine Learning - 聊天机器人构建

    Azure Machine Learning - 聊天机器人构建

    本文介绍如何部署和运行适用于 Python 的企业聊天应用示例。 此示例使用 Python、Azure OpenAI 服务和 Azure AI 搜索中的检索扩充生成(RAG)实现聊天应用,以获取虚构公司员工福利的解答。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理

    2024年01月19日
    浏览(15)
  • Azure Machine Learning - Azure AI 搜索中的矢量搜索

    Azure Machine Learning - Azure AI 搜索中的矢量搜索

    矢量搜索是一种信息检索方法,它使用内容的数字表示形式来执行搜索方案。 由于内容是数字而不是纯文本,因此搜索引擎会匹配与查询最相似的矢量,而不需要匹配确切的字词。本文简要介绍了 Azure AI 搜索中的矢量支持。 其中还解释了与其他 Azure 服务的集成,以及与矢量

    2024年02月05日
    浏览(10)
  • 使用Azure OpenAI+ChatGPT Web快速构建自己的ChatGPT,无需FQ,无忧封号

    使用Azure OpenAI+ChatGPT Web快速构建自己的ChatGPT,无需FQ,无忧封号

    登录Azure网站,申请Azure OpenAI服务 创建 Azure OpenAI 资源创建完成✅后,可以在\\\"资源管理\\\"-\\\"密钥和终结点\\\"部分看到调用Azure OpenAI服务需要用到的api key和endpoint 在Azure OpenAI Studio中部署模型 通过以上操作,我们得到以下资源信息,先记下来,后面搭建网站会用到 名称 值 说明 A

    2024年02月12日
    浏览(10)
  • (3)【Python数据分析进阶】Machine-Learning模型与算法应用-线性回归与逻辑回归

    (3)【Python数据分析进阶】Machine-Learning模型与算法应用-线性回归与逻辑回归

    目录 一、Linear Regression线性回归应用 一元一次线性回归公式及解析 应用案例(一)——自定义数据(Custom data) 1、下载安装sklearn库 2、导入库函数 3、加载数据集 4、创建线性回归对象 5、模型训练 6、预测结果 7、绘制模型图像 8、应用模型进行预测 9、评估指标 应用案例(

    2024年01月24日
    浏览(14)
  • Python使用OpenAI 和大型语言模型对话PDF和图像文本

    本文首先介绍文件文本嵌入方法及代码实现,然后介绍和代码实现提取PDF和图像文本应用于大型语言模型。在此基础上,构建回答任何问题的人工智能助手。 文本嵌入是自然语言处理(NLP)领域的重要工具。它们是文本的数字表示,其中每个单词或短语都表示为实数的密集向

    2024年02月14日
    浏览(11)
  • 选择和训练模型(Machine Learning 研习之十一)

    选择和训练模型(Machine Learning 研习之十一)

    当您看到本文标题时,不禁感叹,总算是到了 训练模型 这一节了。 是啊,在之前的文章中,我们对数据进行了探索,以及对一个训练集和一个测试集进行了采样,也编写了一个 预处理 管道来自动清理,准备您的数据用于 机器学习 算法,然而现在,我们可以选择并训练模型

    2024年01月18日
    浏览(7)
  • [Machine learning][Part4] 多维矩阵下的梯度下降线性预测模型的实现

    [Machine learning][Part4] 多维矩阵下的梯度下降线性预测模型的实现

    目录 模型初始化信息: 模型实现: 多变量损失函数: 多变量梯度下降实现: 多变量梯度实现: 多变量梯度下降实现: 之前部分实现的梯度下降线性预测模型中的training example只有一个特征属性:房屋面积,这显然是不符合实际情况的,这里增加特征属性的数量再实现一次

    2024年02月06日
    浏览(8)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包