SMOTE(Synthetic Minority Over-sampling Technique)

这篇具有很好参考价值的文章主要介绍了SMOTE(Synthetic Minority Over-sampling Technique)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Simply put

SMOTE (Synthetic Minority Over-sampling Technique) is a popular technique used in machine learning for handling imbalanced datasets. In a classification problem, an imbalanced dataset refers to a situation where the number of samples in one class (minority class) is significantly lower than the other class(es) (majority class).

SMOTE works by creating synthetic samples of the minority class to balance the dataset. The process involves randomly selecting a minority class sample and finding its k nearest neighbors. Synthetic samples are then generated by interpolating between the selected sample and its nearest neighbors.

Here is a step-by-step explanation of the SMOTE algorithm:

  1. Identify the minority class samples that need to be oversampled.
  2. For each minority class sample, find its k nearest neighbors (typically using Euclidean distance).
  3. Randomly select one of the k nearest neighbors and calculate the difference between the feature values of the selected sample and the neighbor.
  4. Multiply the difference by a random number between 0 and 1.
  5. Add the scaled difference to the selected sample to create a new synthetic sample.
  6. Repeat steps 3 to 5 until the desired number of synthetic samples is generated.

The SMOTE algorithm helps to address the class imbalance by increasing the representation of the minority class and providing more training samples for the classifier to learn from. This can lead to improved model performance and better generalization on the imbalanced dataset.

It is important to note that the choice of the value of k and the oversampling ratio can affect the performance of the SMOTE algorithm. A careful evaluation and tuning of these parameters is required to ensure optimal results. Additionally, SMOTE should be applied only to the training data and not the entire dataset, to avoid introducing any bias or leakage during validation and testing phases.

Pros and Cons

Pros of using SMOTE:

  1. Improved model performance: SMOTE can help improve the performance of machine learning models on imbalanced datasets by increasing the representation of the minority class. This can lead to more accurate predictions and better overall model performance.
  2. Preserves information: SMOTE generates synthetic examples by interpolating between existing minority class samples, preserving the existing information and patterns in the dataset.
  3. Easy to implement: SMOTE is a simple and straightforward technique that can be easily implemented using various programming languages and libraries, making it accessible to a wide range of users.
  4. Works well with various algorithms: SMOTE can be used with a variety of classification algorithms, such as decision trees, logistic regression, and support vector machines.

Cons of using SMOTE:

  1. Synthetic samples may introduce noise: SMOTE generates synthetic examples by extrapolating from existing minority class samples. These synthetic samples may introduce noise and impact the generalization ability of the model, especially if the original minority class samples are already noisy or mislabeled.
  2. Increased computational complexity: Generating synthetic examples can significantly increase the size of the dataset, potentially leading to increased computational complexity and longer training times for machine learning models.
  3. Dependency on nearby samples: SMOTE relies on finding nearest neighbors to generate synthetic examples. If the minority class samples are sparse or scattered, it can be challenging to identify meaningful nearest neighbors, leading to less effective synthetic examples.
  4. Potential overfitting: If the synthetic samples generated by SMOTE are too close to the existing minority class samples or if the minority class is overly represented, there is a risk of overfitting the model to the minority class and poor generalization to new, unseen data.

For example

import pandas as pd
from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

# Generate a synthetic imbalanced dataset
X, y = make_classification(n_samples=1000, n_features=20, weights=[0.95, 0.05], random_state=42)

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Apply SMOTE to oversample the minority class
smote = SMOTE(random_state=42)
X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

# Convert NumPy arrays to Pandas Series
y_train_series = pd.Series(y_train_resampled)

# Check the class distribution after applying SMOTE
print("Class distribution before SMOTE:", pd.Series(y_train).value_counts())
print("Class distribution after SMOTE:", y_train_series.value_counts())

In the code, we use the make_classification function from the sklearn.datasets module to generate a synthetic imbalanced dataset. The dataset consists of 1000 samples and 20 features, with a class imbalance of 95% for the majority class and 5% for the minority class.

Next, we split the dataset into training and testing sets using the train_test_split function from the sklearn.model_selection module. We specify a test size of 20% and set the random state for reproducibility.

To address the class imbalance, we apply the Synthetic Minority Over-sampling Technique (SMOTE) using the SMOTE class from the imblearn.over_sampling module. We initialize an instance of the SMOTE class with a random state of 42. We then apply the fit_resample method to the training set (X_train and y_train) to oversample the minority class and balance the class distribution. The result is stored in X_train_resampled and y_train_resampled.

Finally, we convert the NumPy array y_train_resampled to a Pandas Series y_train_series for convenience. We check the class distribution before and after applying SMOTE by printing the value counts of each class using the value_counts method.

Note that the class distribution before SMOTE is imbalanced, with the majority class having a much higher count than the minority class. After applying SMOTE, the class distribution is balanced, with equal counts for both classes.文章来源地址https://www.toymoban.com/news/detail-757057.html

到了这里,关于SMOTE(Synthetic Minority Over-sampling Technique)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LLM 大语言模型 & Prompt Technique 论文精读-3

    链接:https://arxiv.org/abs/2207.01206 摘要:现有的用于在交互环境中引导语言的基准测试要么缺乏真实世界的语言元素,要么由于数据收集或反馈信号中涉及大量人类参与而难以扩展。为了弥合这一差距,我们开发了WebShop——一个模拟的电子商务网站环境,拥有118万个真实世界的

    2024年02月16日
    浏览(76)
  • Observability:Synthetic monitoring - 合成监测入门(二)

    在之前的文章 “Observability:Synthetic monitoring - 合成监测入门(一)” 里,我详细描述了如何使用 Project monitors 来创建监控器。我们可以通过在 terminal 中打入命令,创建最为基本的测试框架文件。我们可以通过修改这些文件,并最终上传我们的测试案例到 Elasticsearch。 在今天

    2024年02月13日
    浏览(35)
  • 【威胁情报挖掘-论文阅读】综述:高级持续性威胁智能分析技术 Advanced Persistent Threat intelligent profiling technique: A survey

    🌈你好呀!我是 是Yu欸 🌌 2024每日百字篆刻时光,感谢你的陪伴与支持 ~ 🚀 欢迎一起踏上探险之旅,挖掘无限可能,共同成长! 前些天发现了一个人工智能学习网站,内容深入浅出、易于理解。如果对人工智能感兴趣,不妨点击查看。 BinHui Tang a c, JunFeng Wang b, Zhongkun Yu

    2024年03月24日
    浏览(44)
  • 论文笔记--Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the Case of Informati

    标题:Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and the Case of Information Extraction 作者:Martin Josifoski, Marija Sakota, Maxime Peyrard, Robert West 日期:2023 期刊:arxiv preprint   文章提出了一种利用LLM反向生成数据集的方法,并在此基础上提出了SynthIE模型,模型在信息抽取领域

    2024年02月03日
    浏览(72)
  • Unity的Animation没有了Samples,如何显示Samples

    在unity的一些版本中是在Animation界面中将Samples隐藏起来了的,如下图 想要将Samples显示出来十分简单,点击右上角的三个点  再点击Show Sample Rate   Samples就会显示出来了  

    2024年02月11日
    浏览(29)
  • 贪心算法、贪心搜索/采样(greedy search/sampling)、集束搜索(beam search)、随机采样(random sample)

    贪心算法,又名贪婪法,是寻找 最优解问题 的常用方法,这种方法模式一般将求解过程分成 若干个步骤 ,但每个步骤都应用贪心原则,选取 当前状态下 最好/最优的选择 (局部最有利的选择),并以此希望 最后堆叠出 的结果也是最好/最优的解。{看着这个名字,贪心,贪

    2024年02月15日
    浏览(48)
  • 【python】 random.sample()

    python random.sample() sample()是Python中随机模块的内置函数,可返回从序列中选择的项目的特定长度列表,即列表,元组,字符串或集合。用于随机抽样而无需更换。 语法 : random.sample(sequence, k) 参数 : sequence:可以是列表,元组,字符串或集合。 k:一个整数值,它指定样本的长

    2024年01月19日
    浏览(54)
  • Sample语言上下文无关文法

    表达式 : 表达式-算术表达式|关系表达式|布尔表达式|赋值表达式 算术表达式 算术表达式 - 算术表达式 + 项 | 算术表达式 - 项|项 项 - 项* 因子|项/因子|项%因子因子 因子 - (算术表达式)常量|变量|函数调用 常量 - 数值型常量字符型常量 变量 - 标识符 函数调用 - 标识符(实参列

    2023年04月26日
    浏览(39)
  • Google单元测试sample分析(四)

    GoogleTest单元测试可用实现在每个测试用例结束后监控其内存使用情况, 可以通过GoogleTest提供的事件侦听器EmptyTestEventListener 来实现,下面通过官方提供的sample例子,路径在samples文件夹下的sample10_unittest.cpp 通过Water类来重写new和delete方法来实现记录内存分配/释放的情况,另外

    2024年02月06日
    浏览(31)
  • Google单元测试sample分析(二)

    本文开始介绍googletest/googletest/sample/sample5_unittest.cc 有关TEST_F测试夹具的使用案例 这里的QuickTest继承自testing::Test,并重写SetUp和TearDown方法,SetUp方法在每个TEST_F开始运行一次,退出执行TearDown方法一次。 这个案例里记录整个TEST_F测试夹具的测试用例的运行时间 这里IntegerFunc

    2024年02月08日
    浏览(25)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包