Flink SQL Regular Join 、Interval Join、Temporal Join、Lookup Join 详解

这篇具有很好参考价值的文章主要介绍了Flink SQL Regular Join 、Interval Join、Temporal Join、Lookup Join 详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Flink ⽀持⾮常多的数据 Join ⽅式,主要包括以下三种:

  • 动态表(流)与动态表(流)的 Join
  • 动态表(流)与外部维表(⽐如 Redis)的 Join
  • 动态表字段的列转⾏(⼀种特殊的 Join)

细分 Flink SQL ⽀持的 Join:

Regular Join:流与流的 Join,包括 Inner Equal Join、Outer Equal Join

Interval Join:流与流的 Join,两条流⼀段时间区间内的 Join

Temporal Join:流与流的 Join,包括事件时间,处理时间的 Temporal Join,类似于离线中的快照 Join

Lookup Join:流与外部维表的 Join

Array Expansion:表字段的列转⾏,类似于 Hive 的 explode 数据炸开的列转⾏

Table Function:⾃定义函数的表字段的列转⾏,⽀持 Inner Join 和 Left Outer Join

1.Regular Join

**Regular Join 定义(⽀持 Batch\Streaming):**Regular Join 和离线 Hive SQL ⼀样的 Regular Join,通过条件关联两条流数据输出。

**应⽤场景:**⽐如⽇志关联扩充维度数据,构建宽表;⽇志通过 ID 关联计算 CTR。

Regular Join 包含以下⼏种(以 L 作为左流中的数据标识, R 作为右流中的数据标识):

  • Inner Join(Inner Equal Join):流任务中,只有两条流 Join 到才输出,输出 +[L, R]
  • Left Join(Outer Equal Join):流任务中,左流数据到达之后,⽆论有没有 Join 到右流的数据,都会输出(Join 到输出 +[L, R] ,没 Join 到输出 +[L, null] ),如果右流数据到达之后,发现左流之前输出过没有 Join 到的数据,则会发起回撤流,先输出 -[L, null] ,然后输出 +[L, R]
  • Right Join(Outer Equal Join):有 Left Join ⼀样,左表和右表的执⾏逻辑完全相反
  • Full Join(Outer Equal Join):流任务中,左流或者右流的数据到达之后,⽆论有没有 Join 到另外⼀条流的数据,都会输出(对右流来说:Join 到输出 +[L, R] ,没 Join 到输出 +[null, R] ;对左流来说:Join 到输出 +[L, R] ,没 Join 到输出 +[L, null] )。如果⼀条流的数据到达之后,发现另⼀条流之前输出过没有 Join 到的数据,则会发起回撤流(左流数据到达为例:回撤 -[null, R] ,输出+[L, R] ,右流数据到达为例:回撤 -[L, null] ,输出 +[L, R] )

**实际案例:**案例为曝光⽇志关联点击⽇志,筛选既有曝光⼜有点击的数据,并且补充点击的扩展参数

a)Inner Join 案例 :
-- 曝光⽇志数据
CREATE TABLE show_log_table (
 log_id BIGINT,
 show_params STRING
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '2',
 'fields.show_params.length' = '1',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '100'
);

-- 点击⽇志数据
CREATE TABLE click_log_table (
 log_id BIGINT,
 click_params STRING
)
WITH (
 'connector' = 'datagen',
 'rows-per-second' = '2',
 'fields.click_params.length' = '1',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE sink_table (
 s_id BIGINT,
 s_params STRING,
 c_id BIGINT,
 c_params STRING
) WITH (
 'connector' = 'print'
);

-- 流的 INNER JOIN,条件为 log_id
INSERT INTO sink_table
SELECT
 show_log_table.log_id as s_id,
 show_log_table.show_params as s_params,
 click_log_table.log_id as c_id,
 click_log_table.click_params as c_params
FROM show_log_table
INNER JOIN click_log_table 
ON show_log_table.log_id = click_log_table.log_id;

输出结果如下:

+I[5, d, 5, f]
+I[5, d, 5, 8]
+I[5, d, 5, 2]
+I[3, 4, 3, 0]
+I[3, 4, 3, 3]
b)Left Join 案例:
CREATE TABLE show_log_table (
 log_id BIGINT,
 show_params STRING
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.show_params.length' = '3',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE click_log_table (
 log_id BIGINT,
 click_params STRING
)
WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.click_params.length' = '3',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE sink_table (
 s_id BIGINT,
 s_params STRING,
 c_id BIGINT,
 c_params STRING
) WITH (
 'connector' = 'print'
);

set sql-client.execution.result-mode=changelog;

INSERT INTO sink_table
SELECT
 show_log_table.log_id as s_id,
 show_log_table.show_params as s_params,
 click_log_table.log_id as c_id,
 click_log_table.click_params as c_params
FROM show_log_table
LEFT JOIN click_log_table 
ON show_log_table.log_id = click_log_table.log_id;

输出结果如下:

+I[5, f3c, 5, c05]
+I[5, 6e2, 5, 1f6]
+I[5, 86b, 5, 1f6]
+I[5, f3c, 5, 1f6]
-D[3, 4ab, null, null]
-D[3, 6f2, null, null]
+I[3, 4ab, 3, 765]
+I[3, 6f2, 3, 765]
+I[2, 3c4, null, null]
+I[3, 4ab, 3, a8b]
+I[3, 6f2, 3, a8b]
+I[2, c03, null, null]
...
c)Full Join 案例:
CREATE TABLE show_log_table (
 log_id BIGINT,
 show_params STRING
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '2',
 'fields.show_params.length' = '1',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE click_log_table (
 log_id BIGINT,
 click_params STRING
)WITH (
 'connector' = 'datagen',
 'rows-per-second' = '2',
 'fields.click_params.length' = '1',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE sink_table (
 s_id BIGINT,
 s_params STRING,
 c_id BIGINT,
 c_params STRING
) WITH (
 'connector' = 'print'
);

INSERT INTO sink_table
SELECT
 show_log_table.log_id as s_id,
 show_log_table.show_params as s_params,
 click_log_table.log_id as c_id,
 click_log_table.click_params as c_params
FROM show_log_table
FULL JOIN click_log_table 
ON show_log_table.log_id = click_log_table.log_id;

输出结果如下:

+I[null, null, 7, 6]
+I[6, 5, null, null]
-D[1, c, null, null]
+I[1, c, 1, 2]
+I[3, 1, null, null]
+I[null, null, 7, d]
+I[10, 0, null, null]
+I[null, null, 2, 6]
-D[null, null, 7, 6]
-D[null, null, 7, d]
...

关于 Regular Join 的注意事项:

  • 实时 Regular Join 可以不是 等值 join,等值 join 和 ⾮等值 join 区别在于,等值 join 数据 shuffle 策略是 Hash,会按照 Join on 中的等值条件作为 id 发往对应的下游; ⾮等值 join 数据 shuffle 策略是 Global,所有数据发往⼀个并发,按照⾮等值条件进⾏关联。

    等值 Join:

Flink SQL Regular Join 、Interval Join、Temporal Join、Lookup Join 详解,Flink精通~SQLAPI使用,flink,sql,大数据

非等值 Join:

Flink SQL Regular Join 、Interval Join、Temporal Join、Lookup Join 详解,Flink精通~SQLAPI使用,flink,sql,大数据

  • Join 的流程是左流新来⼀条数据之后,会和右流中符合条件的所有数据做 Join,然后输出。

  • 流的上游是⽆限的数据,要做到关联的话,Flink 会将两条流的所有数据都存储在 State 中,所以 Flink 任务的 State 会⽆限增⼤,需要为 State 配置合适的 TTL,以防⽌ State 过⼤。

2.Interval Join(时间区间 Join)

**Interval Join 定义(⽀持 Batch\Streaming):**Interval Join 可以让⼀条流去 Join 另⼀条流中前后⼀段时间内的数据。

**应⽤场景:**Regular Join 会产⽣回撤流,在实时数仓中⼀般写⼊的 sink 是类似于 Kafka 的消息队列,然后接 clickhouse 等引擎,这些引擎不具备处理回撤流的能⼒,Interval Join ⽤于消灭回撤流的。

Interval Join 包含以下⼏种(以 L 作为左流中的数据标识, R 作为右流中的数据标识):

  • Inner Interval Join:流任务中,只有两条流 Join 到(满⾜ Join on 中的条件:两条流的数据在时间区间 + 满⾜其他等值条件)才输出,输出 +[L, R]
  • Left Interval Join:流任务中,左流数据到达之后,如果没有 Join 到右流的数据,就会等待(放在 State 中等),如果右流之后数据到达,发现能和刚刚那条左流数据 Join 到,则会输出 +[L,R] 。事件时间中随着 Watermark 的推进(也⽀持处理时间)。如果发现发现左流 State 中的数据过期了,就把左流中过期的数据从 State 中删除,然后输出 +[L, null] ,如果右流 State 中的数据过期了,就直接从 State 中删除。
  • Right Interval Join:和 Left Interval Join 执⾏逻辑⼀样,只不过左表和右表的执⾏逻辑完全相反。
  • Full Interval Join:流任务中,左流或者右流的数据到达之后,如果没有 Join 到另外⼀条流的数据,就会等待(左流放在左流对应的 State 中等,右流放在右流对应的 State 中等),如果之后另⼀条流数据到达之后,发现能和刚刚那条数据 Join 到,则会输出 +[L, R] 。事件时间中随着 Watermark 的推进(也⽀持处理时间),发现 State 中的数据过期了,就将这些数据从 State 中删除并且输出(左流过期输出+[L, null] ,右流过期输出 -[null, R] )

**Inner Interval Join 和 Outer Interval Join 的区别在于:**Outer 在随着时间推移的过程中,如果有数据过期了之后,会根据是否是 Outer 将没有 Join 到的数据也给输出。

**实际案例:**曝光⽇志关联点击⽇志,筛选既有曝光⼜有点击的数据,条件是曝光发⽣之后,4 ⼩时之内的点击,并且补充点击的扩展参数

a)Inner Interval Join
CREATE TABLE show_log_table (
 log_id BIGINT,
 show_params STRING,
 row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
 WATERMARK FOR row_time AS row_time
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.show_params.length' = '1',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE click_log_table (
 log_id BIGINT,
 click_params STRING,
 row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
 WATERMARK FOR row_time AS row_time
)
WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.click_params.length' = '1',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE sink_table (
 s_id BIGINT,
 s_params STRING,
 c_id BIGINT,
 c_params STRING
) WITH (
 'connector' = 'print'
);

INSERT INTO sink_table
SELECT
 show_log_table.log_id as s_id,
 show_log_table.show_params as s_params,
 click_log_table.log_id as c_id,
 click_log_table.click_params as c_params
FROM show_log_table 
INNER JOIN click_log_table 
ON show_log_table.log_id = click_log_table.log_id
AND show_log_table.row_time BETWEEN click_log_table.row_time - INTERVAL '4' SECOND AND click_log_table.row_time

输出结果如下:

6> +I[2, a, 2, 6]
6> +I[2, 6, 2, 6]
2> +I[4, 1, 4, 5]
2> +I[10, 8, 10, d]
2> +I[10, 7, 10, d]
2> +I[10, d, 10, d]
2> +I[5, b, 5, d]
6> +I[1, a, 1, 7]
b)Left Interval Join
CREATE TABLE show_log (
 log_id BIGINT,
 show_params STRING,
 row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
 WATERMARK FOR row_time AS row_time
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.show_params.length' = '1',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE click_log (
 log_id BIGINT,
 click_params STRING,
 row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
 WATERMARK FOR row_time AS row_time
)
WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.click_params.length' = '1',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE sink_table (
 s_id BIGINT,
 s_params STRING,
 c_id BIGINT,
 c_params STRING
) WITH (
 'connector' = 'print'
);

INSERT INTO sink_table
SELECT
 show_log.log_id as s_id,
 show_log.show_params as s_params,
 click_log.log_id as c_id,
 click_log.click_params as c_params
FROM show_log LEFT JOIN click_log ON show_log.log_id = click_log.log_id
AND show_log.row_time BETWEEN click_log.row_time - INTERVAL '5' SECOND AND click_log.row_time

输出结果如下:

+I[6, e, 6, 7]
+I[11, d, null, null]
+I[7, b, null, null]
+I[8, 0, 8, 3]
+I[13, 6, null, null]
c)Full Interval Join
CREATE TABLE show_log (
 log_id BIGINT,
 show_params STRING,
 row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
 WATERMARK FOR row_time AS row_time
) WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.show_params.length' = '1',
 'fields.log_id.min' = '5',
 'fields.log_id.max' = '15'
);

CREATE TABLE click_log (
 log_id BIGINT,
 click_params STRING,
 row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
 WATERMARK FOR row_time AS row_time
)
WITH (
 'connector' = 'datagen',
 'rows-per-second' = '1',
 'fields.click_params.length' = '1',
 'fields.log_id.min' = '1',
 'fields.log_id.max' = '10'
);

CREATE TABLE sink_table (
 s_id BIGINT,
 s_params STRING,
 c_id BIGINT,
 c_params STRING
) WITH (
 'connector' = 'print'
);

INSERT INTO sink_table
SELECT
 show_log.log_id as s_id,
 show_log.show_params as s_params,
 click_log.log_id as c_id,
 click_log.click_params as c_params
FROM show_log FULL JOIN click_log ON show_log.log_id = click_log.log_id
AND show_log.row_time BETWEEN click_log.row_time - INTERVAL '5' SECOND AND click_log.row_time

输出结果如下:

+I[6, 1, null, null]
+I[7, 3, 7, 8]
+I[null, null, 6, 6]
+I[null, null, 4, d]
+I[8, d, null, null]
+I[null, null, 3, b]

关于 Interval Join 的注意事项:

实时 Interval Join 可以不是 等值 join ,等值 join 和 ⾮等值 join 区别在于, 等值 join 数据 shuffle 策略是 Hash,会按照 Join on 中的等值条件作为 id 发往对应的下游; ⾮等值 join 数据 shuffle 策略是 Global,所有数据发往⼀个并发,将满⾜条件的数据进⾏关联输出。

3.Temporal Join(快照 Join)

**Temporal Join 定义(⽀持 Batch\Streaming):**同离线中的 拉链快照表 ,Flink SQL 中对应的表叫做 Versioned Table ,使⽤⼀个明细表去 join 这个 Versioned Table 的 join 操作就叫做 Temporal Join。

Temporal Join 中,Versioned Table 是对同⼀条 key(在 DDL 中以 primary key 标记同⼀个 key)的历史版本(根据时间划分版本)做维护,当有明细表 Join 这个表时,可以根据明细表中的时间版本选择 Versioned Table 对应时间区间内的快照数据进⾏ join。

**应⽤场景:**⽐如汇率数据(实时的根据汇率计算总⾦额),在 12:00 之前(事件时间),⼈⺠币和美元汇率是 7:1,在 12:00 之后变为 6:1,那么在 12:00 之前数据就要按照 7:1 进⾏计算,12:00 之后就要按照 6:1 计算。

**Verisoned Table:**Verisoned Table 中存储的数据通常来源于 CDC 或者会发⽣更新的数据。Flink SQL 会为 Versioned Table 维护 Primary Key 下的所有历史时间版本的数据。

**示例:**汇率计算中定义 Versioned Table 的两种⽅式。

-- 定义⼀个汇率 versioned 表
CREATE TABLE currency_rates (
 currency STRING,
 conversion_rate DECIMAL(32, 2),
 update_time TIMESTAMP(3) METADATA FROM `values.source.timestamp` VIRTUAL,
 WATERMARK FOR update_time AS update_time,
 -- PRIMARY KEY 定义⽅式
 PRIMARY KEY(currency) NOT ENFORCED
) WITH (
 'connector' = 'kafka',
 'value.format' = 'debezium-json',
 /* ... */
);

-- 将数据源表按照 Deduplicate ⽅式定义为 Versioned Table
CREATE VIEW versioned_rates AS
SELECT currency, conversion_rate, update_time -- 1. 定义 `update_time` 为时间字段
 FROM (
 SELECT *,
 ROW_NUMBER() OVER (PARTITION BY currency -- 2. 定义 `currency` 为主键
 ORDER BY update_time DESC -- 3. ORDER BY 中必须是时间戳列
 ) AS rownum 
 FROM currency_rates)
WHERE rownum = 1;

**Temporal Join ⽀持的时间语义:**事件时间、处理时间

**实际案例:**汇率计算以 事件时间 任务举例

-- 1. 定义⼀个输⼊订单表
CREATE TABLE orders (
 order_id BIGINT,
 price BIGINT,
 currency STRING,
 order_time TIMESTAMP(3),
 WATERMARK FOR order_time AS order_time
) WITH (
  'connector' = 'filesystem', 
  'path' = 'file:///Users/hhx/Desktop/orders.csv',
  'format' = 'csv'
);

1,100,a,2023-11-01 10:10:10.100
2,200,a,2023-11-02 10:10:10.100
3,300,a,2023-11-03 10:10:10.100
4,300,a,2023-11-04 10:10:10.100
5,300,a,2023-11-05 10:10:10.100
6,300,a,2023-11-06 10:10:10.100

-- 2. 定义⼀个汇率 versioned 表,其中 versioned 表的概念下⽂会介绍到
CREATE TABLE currency_rates (
 currency STRING,
 conversion_rate BIGINT,
 update_time TIMESTAMP(3),
 WATERMARK FOR update_time AS update_time,
 PRIMARY KEY(currency) NOT ENFORCED
) WITH (
 'connector' = 'filesystem', 
  'path' = 'file:///Users/hhx/Desktop/currency_rates.csv',
  'format' = 'csv'
);

a,10,2023-11-01 09:10:10.100
a,11,2023-11-01 10:00:10.100
a,12,2023-11-01 10:10:10.100
a,13,2023-11-01 10:20:10.100
a,14,2023-11-02 10:20:10.100
a,15,2023-11-03 10:20:10.100
a,16,2023-11-04 10:20:10.100
a,17,2023-11-05 10:20:10.100
a,18,2023-11-06 10:00:10.100
a,19,2023-11-06 10:11:10.100

SELECT
 order_id,
 price,
 orders.currency,
 conversion_rate,
 order_time,
 update_time
FROM orders
-- 3. Temporal Join 逻辑
-- SQL 语法为:FOR SYSTEM_TIME AS OF
LEFT JOIN currency_rates FOR SYSTEM_TIME AS OF orders.order_time
ON orders.currency = currency_rates.currency;

可以看到相同的货币汇率会根据具体数据的事件时间不同, Join 到对应时间的汇率【Join 到最近可用的汇率】:

Flink SQL Regular Join 、Interval Join、Temporal Join、Lookup Join 详解,Flink精通~SQLAPI使用,flink,sql,大数据

注意:

事件时间的 Temporal Join ⼀定要给左右两张表都设置 Watermark。

事件时间的 Temporal Join ⼀定要把 Versioned Table 的主键包含在 Join on 的条件中。

**实际案例:**汇率计算以 处理时间 任务举例

10:15> SELECT * FROM LatestRates;

currency rate
======== ======
US Dollar 102
Euro 114
Yen 1

10:30> SELECT * FROM LatestRates;

currency rate
======== ======
US Dollar 102
Euro 114
Yen 1

-- 10:42 时,Euro 的汇率从 114 变为 116
10:52> SELECT * FROM LatestRates;

currency rate
======== ======
US Dollar 102
Euro 116 
Yen 1

-- 从 Orders 表查询数据
SELECT * FROM Orders;

amount currency
====== =========
 2 Euro <== 在处理时间 10:15 到达的⼀条数据
 1 US Dollar <== 在处理时间 10:30 到达的⼀条数据
 2 Euro <== 在处理时间 10:52 到达的⼀条数据
 
-- 执⾏关联查询
SELECT
 o.amount,
 o.currency,
 r.rate, 
 o.amount * r.rate
FROM
 Orders AS o
 JOIN LatestRates FOR SYSTEM_TIME AS OF o.proctime AS r
 ON r.currency = o.currency
 
-- 结果如下:
amount currency rate amount*rate
====== ========= ======= ============
 2 Euro 114 228 <== 在处理时间 10:15 到达的⼀条数据
 1 US Dollar 102 102 <== 在处理时间 10:30 到达的⼀条数据
 2 Euro 116 232 <== 在处理时间 10:52 到达的⼀条数据

处理时间语义中是根据左流数据到达的时间决定拿到的汇率值,Flink 就只为 LatestRates 维护了最新的状态数据,不需要关⼼历史版本的数据。

注意:

Processing-time temporal join is not supported yet.
4.Lookup Join(维表 Join)

**Lookup Join 定义(⽀持 Batch\Streaming):**Lookup Join 是维表 Join,实时数仓场景中,实时获取外部缓存。

**应⽤场景:**Regular Join,Interval Join 等上⾯说的 Join 都是流与流之间的 Join,⽽ Lookup Join 是流与 Redis,Mysql,HBase 这种存储介质的 Join,Lookup 的意思是实时查找。

**实际案例:**使⽤曝光⽤户⽇志流(show_log)关联⽤户画像维表(user_profile)关联到⽤户的维度之后,提供给下游,计算分性别,年龄段的曝光⽤户数使⽤。

输⼊数据: 曝光⽤户⽇志流(show_log)数据(数据存储在 kafka 中):

log_id timestamp user_id
1 2021-11-01 00:01:03 a
2 2021-11-01 00:03:00 b
3 2021-11-01 00:05:00 c
4 2021-11-01 00:06:00 b
5 2021-11-01 00:07:00 c

⽤户画像维表(user_profile)数据(数据存储在 redis 中)

user_id(主键) age sex
a 12-18 男
b 18-24 ⼥
c 18-24 男

**注意:**redis 中的数据结构是按照 key,value 存储的,其中 key 为 user_id,value 为 age,sex 的 json。

CREATE TABLE show_log (
 log_id BIGINT,
 `timestamp` TIMESTAMP(3),
 user_id STRING,
 proctime AS PROCTIME()
) WITH (
  'connector' = 'filesystem', 
  'path' = 'file:///Users/hhx/Desktop/show_log.csv',
  'format' = 'csv'
);

1 2021-11-01 00:01:03 a
2 2021-11-01 00:03:00 b
3 2021-11-01 00:05:00 c
4 2021-11-01 00:06:00 b
5 2021-11-01 00:07:00 c

CREATE TABLE user_profile (
 user_id STRING,
 age STRING,
 sex STRING,
 proctime AS PROCTIME(),
 PRIMARY KEY(user_id) NOT ENFORCED
) WITH (
 'connector' = 'filesystem', 
  'path' = 'file:///Users/hhx/Desktop/currency_rates.csv',
  'format' = 'csv'
);

a 12-18 男
b 18-24 ⼥
c 18-24 男

CREATE TABLE sink_table (
 log_id BIGINT,
 `timestamp` TIMESTAMP(3),
 user_id STRING,
 proctime TIMESTAMP(3),
 age STRING,
 sex STRING
) WITH (
 'connector' = 'print'
);

-- Processing-time temporal join is not supported yet.
-- lookup join 的 query 逻辑
INSERT INTO sink_table
SELECT
 s.log_id as log_id
 , s.`timestamp` as `timestamp`
 , s.user_id as user_id
 , s.proctime as proctime
 , u.sex as sex
 , u.age as age
FROM show_log AS s
LEFT JOIN user_profile FOR SYSTEM_TIME AS OF s.proctime AS u
ON s.user_id = u.user_id

输出数据如下:

log_id timestamp user_id age sex
1 2021-11-01 00:01:03 a 12-18 男
2 2021-11-01 00:03:00 b 18-24 ⼥
3 2021-11-01 00:05:00 c 18-24 男
4 2021-11-01 00:06:00 b 18-24 ⼥
5 2021-11-01 00:07:00 c 18-24 男

实时的 lookup 维表关联能使⽤ 处理时间 去做关联。

注意:

a)同⼀条数据关联到的维度数据可能不同

实时数仓中常⽤的实时维表是不断变化的,当前流表数据关联完维表数据后,如果同⼀个 key 的维表的数据发⽣了变化,已关联到的维表的结果数据不会再同步更新。

举个例⼦,维表中 user_id 为 1 的数据在 08:00 时 age 由 12-18 变为了 18-24,那么当任务在 08:01 failover 之后从 07:59 开始回溯数据时,原本应该关联到 12-18 的数据会关联到 18-24 的 age 数据,有可能会影响数据质量。

b)会发⽣实时的新建及更新的维表应该建⽴起数据延迟的监控,防⽌流表数据先于维表数据到达,关联不到维表数据

c)维表常⻅的性能问题及优化思路

维表性能问题: ⾼ qps 下访问维表存储引擎产⽣的任务背压,数据产出延迟问题。

举个例⼦:

**在没有使⽤维表的情况下:**⼀条数据从输⼊ Flink 任务到输出 Flink 任务的时延假如为 0.1 ms ,那么并⾏度为 1 的任务的吞吐可以达到 1 query / 0.1 ms = 1w qps 。

**在使⽤维表之后:**每条数据访问维表的外部存储的时⻓为 2 ms ,那么⼀条数据从输⼊ Flink 任务到输出 Flink 任务的时延就会变成 2.1 ms ,那么同样并⾏度为 1 的任务的吞吐只能达到 1 query / 2.1 ms = 476 qps ,两者的吞吐量相差 21 倍,导致维表 join 的算⼦会产⽣背压,任务产出会延迟。

常⽤的优化⽅案-DataStream:

  • **按照 redis 维表的 key 分桶 + local cache:**通过按照 key 分桶的⽅式,让⼤多数据的维表关联的数据访问⾛之前访问过得 local cache 即可,把访问外部存储 2.1 ms 处理⼀个 query 变为访问内存的 0.1 ms 处理⼀个 query 的时⻓。
  • **异步访问外存:**DataStream api 有异步算⼦,可以利⽤线程池去同时多次请求维表外部存储,把 2.1 ms 处理 1 个 query 变为 2.1 ms 处理 10 个 query,吞吐可变优化到 10 / 2.1 ms = 4761 qps。
  • **批量访问外存:**除了异步访问之外,还可以批量访问外部存储,举例:在访问 redis 维表的 1 query 占⽤ 2.1 ms 时⻓中,其中可能有 2 ms 都是在⽹络请求上⾯的耗时 ,其中只有 0.1 ms 是 redis server 处理请求的时⻓,可以使⽤ redis 提供的 pipeline 能⼒,在客户端(也就是 flink 任务 lookup join 算⼦中),攒⼀批数据,使⽤ pipeline 去同时访问 redis sever,把 2.1 ms 处理 1 个 query 变为 7ms(2ms + 50 * 0.1ms) 处理 50 个 query,吞吐可变为 50 query / 7 ms = 7143 qps。

**实测:**上述优化效果中,最好⽤的是 1 + 3,2 相⽐ 3 还是⼀条⼀条发请求,性能会差⼀些。

常⽤的优化⽅案-Flink SQL:

**按照 redis 维表的 key 分桶 + local cache:**sql 中做分桶,得先做 group by,如果做了 group by 的聚合,就只能在 udaf 中做访问 redis 处理,并且 UDAF 产出的结果只能是⼀条,实现复杂,因此选择不做 keyby 分桶,直接使⽤ local cache 做本地缓存,虽然【直接缓存】的效果⽐【先按照 key 分桶再做缓存】的效果差,但是也能减少访问 redis 压⼒。

**异步访问外存:**官⽅实现的 hbase connector ⽀持异步访问,搜索 lookup.async。

https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/connectors/table/hbase/ 

**批量访问外存:**基于 redis 的批量访问外存优化功能,参考下⽂。

https://mp.weixin.qq.com/s/ku11tCZp7CAFzpkqd4J1cQ
5.Regular Join 、Interval Join、Temporal Join、Lookup Join 总结
a)FlinkSQL 的 Join 按照流的性质分为
  • 流与流的 Join:Regular Join+Interval Join+Temporal Join
  • 流于外部存储的 Join:Lookup Join
b)Inner Join 与 Outer Join 区别

Inner Join:只有两条流 Join 上才会发出,不涉及回撤流

Outer Join:Join 不上会发出 null,如果是 Regular Outer Join 涉及回撤流,Interval Outer Join 不涉及回撤流

c)Regular Join 、Interval Join、Temporal Join 区别

Regular Join:如果不设置状态的 TTL,两条流的所有数据都会暂存进行 Join,涉及回撤流

Interval Join:可以选定 一条流指定时间区间内数据 进行 Join,不涉及回撤流

Temporal Join:根据 一条流的时间字段 选择 另一条流的历史时间区间 进行 Join,不涉及回撤流文章来源地址https://www.toymoban.com/news/detail-757422.html

到了这里,关于Flink SQL Regular Join 、Interval Join、Temporal Join、Lookup Join 详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(1)- window join

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月03日
    浏览(60)
  • 【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(3)- 数据倾斜处理、分区示例

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月03日
    浏览(58)
  • Flink Temporal Join 系列 (4):用 Temporal Table Function 实现基于处理时间的关联

    博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧

    2024年04月23日
    浏览(37)
  • 【flink番外篇】15、Flink维表实战之6种实现方式-通过Temporal table实现维表数据join

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年01月20日
    浏览(52)
  • Flink SQL之Interval Joins

    区间是双流join的优化,基于处理时间或事件时间,在一定时间区间内数据,相同的key进行join(支持 BatchStreaming)。Interval Join 可以让一条流去 Join 另一条流中前后一段时间内的数据。 对于stream查询,时间区间join只支持有时间属性的 append-only表。由于时间属性是准单调递增的

    2024年02月09日
    浏览(52)
  • Flink-SQL——时态表(Temporal Table)

    这里我们需要注意一下的是虽然我们介绍的是Flink 的 Temporal Table 但是这个概念最早是在数据库中提出的 在ANSI-SQL 2011 中提出了Temporal 的概念,Oracle,SQLServer,DB2等大的数据库厂商也先后实现了这个标准。Temporal Table记录了历史上任何时间点所有的数据改动,Temporal Table的工作

    2024年01月16日
    浏览(54)
  • Flink join详解

    Flink SQL支持对动态表进行复杂而灵活的连接操作。 为了处理不同的场景,需要多种查询语义,因此有几种不同类型的 Join。 默认情况下,joins 的顺序是没有优化的。表的 join 顺序是在  FROM  从句指定的。可以通过把更新频率最低的表放在第一个、频率最高的放在最后这种方

    2024年02月21日
    浏览(39)
  • Flink-SQL join 优化 -- MiniBatch + local-global

    问题1. 近期在开发flink-sql期间,发现数据在启动后,任务总是进行重试,运行一段时间后,container heartbeat timeout,内存溢出(GC overhead limit exceede) ,作业无法进行正常工作 问题2. 未出现container心跳超时的,作业运行缓慢,超过一天 ,作业仍存在反压情况 查看日志内容发现,出

    2024年02月06日
    浏览(41)
  • Spark SQL join操作详解

    本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据。分别创建员工和部门的 Datafame,并注册为临时视图,代码如下: 两表的主要字段如下: 注:emp.json,dept.json 可以在本仓库的resources 目录进行下载。 Spark 中支持多种连接类型: Inner Join  : 内连接; Full Outer Join  

    2023年04月16日
    浏览(78)
  • 一文详解pyspark中sql的join

    大家好,今天分享一下pyspark中各种sql join。 数据准备 本文以学生和班级为单位进行介绍。 学生表有sid(学生id)、sname(学生姓名)、sclass(学生班级id)。 班级表有cid(班级id)、cname(班级名称)。 通过学生表的sclass和班级表的cid将两张表关联在一起。 下面是数据文件

    2024年01月21日
    浏览(78)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包