Hive3 on Spark3配置

这篇具有很好参考价值的文章主要介绍了Hive3 on Spark3配置。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、软件环境

1.1 大数据组件环境

大数据组件 版本
Hive 3.1.2
Spark spark-3.0.0-bin-hadoop3.2

1.2 操作系统环境

OS 版本
MacOS Monterey 12.1
Linux - CentOS 7.6

2、大数据组件搭建

2.1 Hive环境搭建

1)Hive on Spark说明

Hive引擎包括:默认 mrsparkTez
Hive on Spark:Hive既作为存储元数据又负责SQL的解析优化,语法是HQL语法,执行引擎变成了Spark,Spark负责采用RDD执行。
Spark on Hive : Hive只作为存储元数据,Spark负责SQL解析优化,语法是Spark SQL语法,Spark负责采用RDD执行。

2)Hive on Spark配置

(1)兼容性说明

注意:官网下载的Hive3.1.2和Spark3.0.0默认是不兼容的。因为Hive3.1.2支持的Spark版本是2.4.5,所以需要我们重新编译Hive3.1.2版本。

编译步骤:官网下载Hive3.1.2源码,修改pom文件中引用的Spark版本为3.0.0,如果编译通过,直接打包获取jar包。如果报错,就根据提示,修改相关方法,直到不报错,打包获取jar包。

(2)在Hive所在节点部署Spark

如果之前已经部署了Spark,则该步骤可以跳过。

Spark官网下载jar包地址
http://spark.apache.org/downloads.html

上传并解压解压spark-3.0.0-bin-hadoop3.2.tgz
[postman@cdh01 software]$ tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module/

[postman@cdh01 software]$ mv /opt/module/spark-3.0.0-bin-hadoop3.2 /opt/module/spark

(3)配置SPARK_HOME环境变量

[postman@cdh01 software]$ sudo vim /etc/profile.d/my_env.sh
添加如下内容。

# SPARK_HOME
export SPARK_HOME=/opt/module/spark
export PATH=$PATH:$SPARK_HOME/bin

使其生效:
source ${环境变量文件}

# For MacOS
[postman@cdh01 software]$ source ~/.zshrc

# For CentOS
[postman@cdh01 software]$ source /etc/profile.d/my_env.sh

(4)在hive中创建spark配置文件

[postman@cdh01 software]$ vim /opt/module/hive/conf/spark-defaults.conf

添加如下内容(在执行任务时,会根据如下参数执行)。

spark.master                             yarn
spark.eventLog.enabled                   true
spark.eventLog.dir                       hdfs://cdh01:8020/spark-history
spark.executor.memory                    1g
spark.driver.memory					     1g

在HDFS创建如下路径,用于存储历史日志。

[postman@cdh01 software]$ hadoop fs -mkdir /spark-history

(5)向HDFS上传Spark无 hadoop+hive 依赖的纯净jar包

  • 说明1:由于Spark3.0.0非纯净版默认支持的是hive2.3.7版本,直接使用会和安装的Hive3.1.2出现兼容性问题。所以采用Spark纯净版jar包,不包含hadoop和hive相关依赖,避免冲突。
  • 说明2:Hive任务最终由Spark来执行,Spark任务资源分配由Yarn来调度,该任务有可能被分配到集群的任何一个节点。所以需要将Spark的依赖上传到HDFS集群路径,这样集群中任何一个节点都能获取到。

上传并解压spark-3.0.0-bin-without-hadoop.tgz

[postman@cdh01 software]$ tar -zxf /opt/software/spark-3.0.0-bin-without-hadoop.tgz

上传Spark纯净版jar包到HDFS

[postman@cdh01 software]$ hadoop fs -mkdir -p /spark-jars
[postman@cdh01 software]$ hadoop fs -put spark-3.0.0-bin-without-hadoop/jars/* /spark-jars

(6)修改hive-site.xml文件

[postman@cdh01 ~]$ vim /opt/module/hive/conf/hive-site.xml

添加如下内容。

<!--Spark依赖位置(注意:端口号8020必须和namenode的端口号一致)-->
<property>
    <name>spark.yarn.jars</name>
    <value>hdfs://cdh01:8020/spark-jars/*</value>
</property>
  
<!--Hive执行引擎-->
<property>
    <name>hive.execution.engine</name>
    <value>spark</value>
</property>

7)修改 $SPARK_HOME/conf/spark-env.sh 文件

[postman@cdh01 ~]$ vim $SPARK_HOME/conf/spark-env.sh

添加如下内容。

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

否则将报各类hadoop依赖包缺失的异常,如log4j、Hadoop的Configuration等包缺失。

2.2 Hive on Spark测试

(1)启动hive客户端

[postman@cdh01 hive]$ bin/hive

(2)创建一张测试表

hive (default)> create table user(id int, name string);

(3)通过insert测试效果

hive (default)> insert into table user values(1001,'zhangsan');

若结果如下,则说明配置成功。

hive (default)> insert into table user values(1001,'zhangsan');
Query ID = user_20231108165919_9908b655-96a7-4ccb-bb62-4dde28df9394
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Running with YARN Application = application_1699425455296_0013
Kill Command = /opt/module/hadoop-3.1.3/bin/yarn application -kill application_1699425455296_0013
Hive on Spark Session Web UI URL: http://192.168.1.1:60145

Query Hive on Spark job[0] stages: [0, 1]
Spark job[0] status = RUNNING
Job Progress Format
CurrentTime StageId_StageAttemptId: SucceededTasksCount(+RunningTasksCount-FailedTasksCount)/TotalTasksCount
2023-11-08 16:59:35,314 Stage-0_0: 0/1  Stage-1_0: 0/1
2023-11-08 16:59:37,331 Stage-0_0: 1/1 Finished Stage-1_0: 0/1
2023-11-08 16:59:39,363 Stage-0_0: 1/1 Finished Stage-1_0: 1/1 Finished
Spark job[0] finished successfully in 6.09 second(s)
Loading data to table default.user
OK
col1    col2
Time taken: 20.569 seconds
hive (default)> select * from user;
OK
user.id      user.name
1001         zhangsan

3、安装过程中的错误

3.1 M1芯片下 zstd 库文件错误

当执行 MR 类 sql 如 ”insert into table user values(1001,‘zhangsan’); “ 时,程序在 Console 上长时间卡住,但无错误日志输出,此时日志格式为:

hive (default)> insert into table student values(1,'abc');
Query ID = davidliu_20231108163620_eb8fabe4-b615-4d12-9dba-56ead5946a98
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Running with YARN Application = application_1699425455296_0010
Kill Command = /opt/module/hadoop-3.1.3/bin/yarn application -kill application_1699425455296_0010
Hive on Spark Session Web UI URL: http://192.168.154.240:56101

Query Hive on Spark job[0] stages: [0, 1]
Spark job[0] status = RUNNING
Job Progress Format
CurrentTime StageId_StageAttemptId: SucceededTasksCount(+RunningTasksCount-FailedTasksCount)/TotalTasksCount
2023-11-08 16:36:36,031 Stage-0_0: 0/1  Stage-1_0: 0/1
2023-11-08 16:36:39,089 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:36:42,148 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:36:45,201 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:36:48,270 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:36:51,331 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:36:54,385 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:36:57,435 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:00,478 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:03,517 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:06,572 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:09,606 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:12,653 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:15,700 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:18,737 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:21,790 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:24,832 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:27,874 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
2023-11-08 16:37:30,914 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
...
...
2023-11-08 16:37:33,974 Stage-0_0: 1/1 Finished Stage-1_0: 0(+1)/1
Interrupting... Be patient, this might take some time.
Press Ctrl+C again to kill JVM
Exiting the JVM

在“Ctrl + C”取消 sql 执行之前,去 yarn 控制页面查看了一下程序运行的结果:

Hive3 on Spark3配置,Hive,hive

在WebUI 页面上从某次失败 Application 的某次 MR 任务的执行 log 中,发现有如下错误:

Caused by: java.lang.UnsatisfiedLinkError: no zstd-jni in java.library.path
Unsupported OS/arch, cannot find /darwin/aarch64/libzstd-jni.dylib or load zstd-jni from system libraries. Please try building from source the jar or providing libzstd-jni in your system.
       at java.lang.Runtime.loadLibrary0(Runtime.java:1011)
       at java.lang.System.loadLibrary(System.java:1657)
       at com.github.luben.zstd.util.Native.load(Native.java:85)
       at com.github.luben.zstd.util.Native.load(Native.java:55)
       at com.github.luben.zstd.Zstd.<clinit>(Zstd.java:13)
       at com.github.luben.zstd.Zstd.decompressedSize(Zstd.java:579)

同时在 Hadoop ResourceManager 的运行日志中也发现了关于这块的报错日志。

从上述 log 中可以看出zstd 软件库包(作用:文件压缩)在 M1 芯片下 不能很高的被支持,结合 Hive On Spark 运行的库包路径查找比对,最终在上传到HDFS集群路径/spark-jars 下 Hive on Spark的依赖jar 包中发现了 zstd jar 包:

  • zstd-jni-1.4.4-3.jar

经查,此前已有开发者在 zstd 的github项目 下上报过这个问题,且有网友反馈在"1.4.9-1"版本中已修复了该问题。
于是在 mvnrepository 网站 上下载版本的 jar 包:

  • zstd-jni-1.4.9-1.jar

Hive3 on Spark3配置,Hive,hive
之后,将 HDFS 路径“hdfs://cdh01:8020/spark-jars/*”下的原始 “zstd-jni-1.4.4-3.jar” 删除,并替换为 “zstd-jni-1.4.9-1.jar” 后(如上图所示),经再度测试,该问题就解决了。文章来源地址https://www.toymoban.com/news/detail-757798.html

到了这里,关于Hive3 on Spark3配置的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • Hadoop-HA-Hive-on-Spark 4台虚拟机安装配置文件

    apache-hive-3.1.3-bin.tar spark-3.0.0-bin-hadoop3.2.tgz hadoop-3.1.3.tar.gz 在hdfs上新建 spark-history(设置权限777),spark-jars文件夹 上传jar到hdfs 链接hadoop中的文件 ln -s 源文件名 新文件名 链接hive中的文件 ln -s 源文件名 新文件名 链接hadoop中的文件 ln -s 源文件名 新文件名

    2024年02月07日
    浏览(22)
  • 了解hive on spark和spark on hive

    了解hive on spark和spark on hive

            大数据刚出来的时候,并不是很完善。发展的不是很快,尤其是在计算服务上,当时使用的是第一代mr计算引擎,相对来说计算并不是那么快。让大数据快速发展的是2009年伯克利大学诞生的spark,并在2013年成为Aparch的顶级开源项目。使大数据发展比较迅速、但是随着

    2024年02月14日
    浏览(8)
  • 【大数据技术】Hive on spark 与Spark on hive 的区别与联系

    【大数据技术】Hive on spark 与Spark on hive 的区别与联系 Hive on Spark Hive 既作为存储元数据又负责sql的解析优化,遵守HQL语法,执行引擎变成了spark,底层由spark负责RDD操作 Spark on Hive Hive只作为存储元数据,Spark负责sql的解析优化,遵守spark sql 语法,底层由spark负责RDD操作

    2024年02月15日
    浏览(8)
  • SparkSQL与Hive整合(Spark On Hive)

    SparkSQL与Hive整合(Spark On Hive)

    hive metastore元数据服务用来存储元数据,所谓元数据,即hive中库、表、字段、字段所属表、表所属库、表的数据所在目录及数据分区信息。元数据默认存储在hive自带的Derby数据库。在内嵌模式和本地模式下,metastore嵌入在主hive server进程中。但在远程模式下,metastore 和 hive

    2024年02月12日
    浏览(12)
  • spark on hive

    spark on hive

    注意:需要提前搭建好hive,并对hive进行配置。并将spark配置成为spark on yarn模式。 提前创建好启动日志存放路径 mkdir $HIVE_HOME/logStart 注意:其实还是hive的thirftserver服务,同时还需要启动spark集群 连接thirftserver服务后,就可以使用hive的元数据(hive在hdfs中的数据库和表),并且

    2024年02月07日
    浏览(10)
  • Hive on Spark (1)

    在 Apache Spark 中,Executor 是分布式计算框架中的一个关键组件,用于 在集群中执行具体的计算任务 。每个 Executor 都在独立的 JVM 进程中运行,可以在集群的多台机器上同时存在。Executors 负责实际的数据处理、计算和任务执行,它们执行来自 Driver 的指令,并将计算结果返回给

    2024年02月12日
    浏览(10)
  • centos7上hive3.1.3安装及配置

    centos7上hive3.1.3安装及配置

    hive是基于hadoop的数据仓库软件,部署运行在linux系统之上,安装之前必须保证hadoop环境运行正常,hive本身不是分布式软件,它的分布式主要是借助hadoop实现,存储是hdfs,计算是mapreduce。 需要同时安装apache-hive-3.1.3-bin.tar.gz和mysql-5.7.42-1.el7.x86_64.rpm-bundle.tar两个软件,因为hive的

    2024年02月09日
    浏览(11)
  • hive on spark内存模型

    hive on spark内存模型

    hive on spark的调优,那必然涉及到这一系列框架的内存模型。本章就是来讲一下这些框架的内存模型。 hive on spark的任务,从开始到结束。总共涉及了3个框架。分别是:yarn、hive、spark 其中,hive只是一个客户端的角色。就不涉及任务运行时的内存。所以这里主要讲的yarn和spark的

    2024年04月16日
    浏览(7)
  • Hive on Spark环境搭建

    Hive on Spark环境搭建

    Hive 引擎包括:默认 MR、tez、spark 最底层的引擎就是MR (Mapreduce)无需配置,Hive运行自带 Hive on Spark:Hive 既作为存储元数据又负责 SQL 的解析优化,语法是 HQL 语法,执行引擎变成了 Spark,Spark 负责采用 RDD 执行。 Spark on Hive : Hive 只作为存储元数据,Spark 负责 SQL 解析优化,语

    2024年02月13日
    浏览(8)
  • hive on spark亲自编译,详细教程

    hive on spark亲自编译,详细教程

    hive 2.3.6 spark 2.0.0版本 hadoop-2.7.6版本 操作流程: hadoop-2.7.6 1、安装hadoop不说了。简单。 spark-2.0.0 2、下载spark-2.0.0的源码. https://archive.apache.org/dist/spark/spark-2.1.0/ 这个下载spark各个版本。 3、编译spark源码 执行编译操作: 当前目录下面会多一个tgz的安装包。需要把这个文件拷贝的

    2024年02月16日
    浏览(20)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包