大数据机器学习与深度学习——回归模型评估

这篇具有很好参考价值的文章主要介绍了大数据机器学习与深度学习——回归模型评估。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大数据机器学习与深度学习——回归模型评估

回归模型的性能的评价指标主要有:MAE(平均绝对误差)、MSE(平均平方误差)、RMSE(平方根误差)、R2_score。但是当量纲不同时,RMSE、MAE、MSE难以衡量模型效果好坏,这就需要用到R2_score。

平均绝对误差(MAE Mean Absolute Error)

是绝对误差的平均值,能更好地反映预测值误差的实际情况。

均方误差(MSE mean-square error)

该统计参数是预测数据和原始数据对应点误差的平方和的均值。

根均方根误差(RMSE Root Mean Square Error)

求均方误差的根号

决定系数(R-Squared Score)

决定系数R2 score(coefficient of determination),也称判定系数或者拟合优度。它是表征回归方程在多大程度上解释了因变量的变化,或者说方程对观测值的拟合程度如何。拟合优度的有效性通常要求:自变量个数:样本数>1:10。

R2 决定系数,反映因变量的全部变异能通过回归关系被自变量解释的比例。

大数据机器学习与深度学习——回归模型评估,机器学习与深度学习,大数据人工智能,自然语言处理,机器学习,深度学习,回归,人工智能,算法
根据 R-Squared 的取值,来判断模型的好坏,其取值范围为[0,1]:

如果结果是 0,说明模型拟合效果很差;

如果结果是 1,说明模型无错误。

一般来说,R-Squared 越大,表示模型拟合效果越好。R-Squared 反映的是大概有多准,因为,随着样本数量的增加,R-Square必然增加,无法真正定量说明准确程度,只能大概定量。

所以要想决定系数R2越接近1,必须满足MSE越小,也就是真实值与预测值相差不大,也就是模型拟合程度高,同时var方差越大,也就是我们的样本离散程度大,对应的我们实际采样过程中,就是要求样本是随机性,以及全面性,覆盖度广。

注意

决定系数适用于线性回归,单变量或者多元线性;y=ax或者y=ax1+bx2…; - 拟合模型是非线性的,不能用决定系数来评价其拟合效果,例如:BP神经网络;

当拟合程度不行,可以调整参数或者权重-例如a,b,使预测值与真实值越接近。

其中,分子部分表示真实值与预测值的平方差之和,类似于均方差 MSE;分母部分表示真实值与均值的平方差之和,类似于方差 Var。

(R-Squared score)-深度研究

对于R-Squared score可以通俗地理解为使用均值作为误差基准,看预测误差是否大于或者小于均值基准误差。

R2_score = 1,样本中预测值和真实值完全相等,没有任何误差,表示回归分析中自变量对因变量的解释越好。

R2_score =0。此时分子等于分母,样本的每项预测值都等于均值。

R2_score不是r的平方,也可能为负数(分子>分母),模型等于盲猜,还不如直接计算目标变量的平均值。

# 根据公式,我们可以写出r2_score实现代码
1- mean_squared_error(y_test,y_preditc)/ np.var(y_test)
# 也可以直接调用sklearn.metrics中的r2_score
sklearn.metrics.r2_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average')

# y_true:观测值 
# y_pred:预测值 
# sample_weight:样本权重,默认None
# multioutput:多维输入输出,可选‘raw_values’, ‘uniform_average’,‘variance_weighted’或None。默认为’uniform_average’;

# raw_values:分别返回各维度得分 uniform_average:各输出维度得分的平均
# variance_weighted:对所有输出的分数进行平均,并根据每个输出的方差进行加权。

r2_score: 0.47

r2_score偏小,预测效果一般。

注意事项

1、R-Squared score 一般用在线性模型中(非线性模型也可以用)

2、R-Squared score 不能完全反映模型预测能力的高低,某个实际观测的自变量取值范围很窄,但此时所建模型的R2 很大,但这并不代表模型在外推应用时的效果肯定会很好。

3、数据集的样本越大,R²越大,因此,不同数据集的模型结果比较会有一定的误差,此时可以使用Adjusted R-Square (校正决定系数),能对添加的非显著变量给出惩罚
校正决定系数(Adjusted R-Square)是多元线性回归模型中用于评估模型拟合优度的一种统计指标。它对决定系数(R-Square)进行了修正,考虑了模型中使用的自变量的数量。

决定系数(R-Square)用于衡量模型对因变量变异性的解释程度,其取值范围在0到1之间,越接近1表示模型对数据的解释越好。然而,当模型中增加自变量时,R-Square的值可能会增加,即使新加入的变量对模型的解释并不显著。为了解决这个问题,引入了校正决定系数。

校正决定系数

计算公式如下:

大数据机器学习与深度学习——回归模型评估,机器学习与深度学习,大数据人工智能,自然语言处理,机器学习,深度学习,回归,人工智能,算法

其中:

( R^2 ) 是决定系数。
( n ) 是样本数量。
( k ) 是模型中自变量的数量。
校正决定系数考虑了模型的自由度,通过对决定系数进行修正,避免了在模型中增加自变量时导致模型拟合度提高的情况。因此,校正决定系数通常对模型的泛化能力提供更准确的评估。

在实际应用中,分析人员通常会综合考虑决定系数和校正决定系数,以全面评估模型的拟合质量和适应性。

其中,n 是样本数量,p 是特征数量。

Adjusted R-Square 抵消样本数量对 R-Square的影响,做到了真正的 0~1,越大越好。

python中可以直接调用。

统计学理论

方差(variance):
计算公式:S2=1/n [(x1-X)2+(x2-X)2+(x3-X)2+…(xn-X)2] (X表示平均数)

方差在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。

概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。

统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。

代码实现

sklearn库调用模型评估

#导入相应的函数库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
import numpy as np
import pandas as pd

# 使用sklearn调用衡量线性回归的MSE 、 RMSE、 MAE、r2
from math import sqrt
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
print("mean_absolute_error:", mean_absolute_error(y_test, y_predict))
print("mean_squared_error:", mean_squared_error(y_test, y_predict))
print("rmse:", sqrt(mean_squared_error(y_test, y_predict)))
print("r2 score:", r2_score(y_test, y_predict))

原生实现

# 衡量线性回归的MSE 、 RMSE、 MAE、r2
from math import sqrt
mse = np.sum((y_test - y_predict) ** 2) / len(y_test)
rmse = sqrt(mse)
mae = np.sum(np.absolute(y_test - y_predict)) / len(y_test)
r2 = 1-mse/ np.var(y_test)#均方误差/方差
print(" mae:",mae,"mse:",mse," rmse:",rmse," r2:",r2)

应用文章来源地址https://www.toymoban.com/news/detail-757810.html

y_test1=np.array(Y_true_3[:,0:1])
y_predict1=np.array(predict[:,0])
y_test2=np.array(Y_true_3[:,1:2])
y_predict2=np.array(predict[:,1])
print("ROP   : R2:%.4f"% r2_score(y_test1, y_predict1),  " MSE:%.4f"%  mean_squared_error(y_test1, y_predict1),  "RMSE:%.4f" % calc_rmse(y_test1, y_predict1))
print("Torque: R2:%.4f"% r2_score(y_test2, y_predict2),  "MSE:%.4f"%  mean_squared_error(y_test2, y_predic

到了这里,关于大数据机器学习与深度学习——回归模型评估的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 打造你的专属大模型,学完即可使用上岗!技术人的大模型课程(人工智能/机器学习/深度学习)

    技术人的大模型课 让一部分人在大模型时代,先拥抱AI,为编程专家开启AI新篇章 在2024年,大模型不再是可选技能,而是技术行业的必备。你是否曾在夜深人静时想象,从一名代码专家转型为AI行业的引领者? 如果你的答案是肯定的,那么这门课程正是为你量身定制, 针对

    2024年04月27日
    浏览(49)
  • 机器学习和数据挖掘03-模型性能评估指标

    概念:模型正确预测的样本数量与总样本数量的比例。 公式:Accuracy = (TP + TN) / (TP + TN + FP + FN) TP (True Positives):正确预测为正例的样本数。即模型正确地将正例判定为正例。 TN (True Negatives):正确预测为负例的样本数。即模型正确地将负例判定为负例。 FP (False Positives):错误

    2024年02月10日
    浏览(181)
  • 大数据、人工智能、机器学习、深度学习关系联系前言

    1.大数据和人工智能关系 2.机器学习、深度学习、人工智能关系 3.监督学习、无监督学习、半监督学习、强化学习、迁移学习关系 4.机器学习具体内容 1.数据驱动的人工智能 :人工智能系统需要大量的数据来进行训练和学习。大数据提供了海量的信息,可以用于训练机器学习

    2024年02月12日
    浏览(62)
  • 大数据机器学习与深度学习——过拟合、欠拟合及机器学习算法分类

    针对模型的拟合,这里引入两个概念:过拟合,欠拟合。 过拟合:在机器学习任务中,我们通常将数据集分为两部分:训练集和测试集。训练集用于训练模型,而测试集则用于评估模型在未见过数据上的性能。过拟合就是指模型在训练集上表现较好,但在测试集上表现较差的

    2024年02月04日
    浏览(42)
  • 基于深度学习的人工智能安全:威胁检测、攻击防御和安全评估

    作者:禅与计算机程序设计艺术 随着人工智能技术的不断发展,给社会带来的影响越来越大。越来越多的企业和个人都依赖于AI产品或服务,同时也面临着各种各样的安全风险,比如身份验证缺失、数据泄露、恶意软件等。如何保障AI产品及服务的安全,成为当前和未来的重

    2024年02月13日
    浏览(56)
  • 机器学习_数据升维_多项式回归代码_保险案例数据说明_补充_均匀分布_标准正太分布---人工智能工作笔记0038

    然后我们再来看一下官网注意上面这个旧的,现在2023-05-26 17:26:31..我去看了新的官网, scikit-learn已经添加了很多新功能,     我们说polynomial多项式回归其实是对数据,进行 升维对吧,从更多角度去看待问题,这样 提高模型的准确度. 其实y=w0x0+w1x1.. 这里就是提高了这个x的个数对吧

    2024年02月06日
    浏览(45)
  • 大数据机器学习深度解读ROC曲线:技术解析与实战应用

    机器学习和数据科学在解决复杂问题时,经常需要评估模型的性能。其中,ROC(Receiver Operating Characteristic)曲线是一种非常有用的工具,被广泛应用于分类问题中。该工具不仅在医学检测、信号处理中有着悠久的历史,而且在近年来的机器学习应用中也显得尤为关键。 ROC曲线

    2024年02月04日
    浏览(41)
  • 大数据机器学习深度解读决策树算法:技术全解与案例实战

    本文深入探讨了机器学习中的决策树算法,从基础概念到高级研究进展,再到实战案例应用,全面解析了决策树的理论及其在现实世界问题中的实际效能。通过技术细节和案例实践,揭示了决策树在提供可解释预测中的独特价值。 决策树算法是机器学习领域的基石之一,其强

    2024年02月04日
    浏览(50)
  • 数据预处理的人工智能与深度学习:如何提高模型性能

    数据预处理是人工智能(AI)和深度学习(DL)领域中的一个关键环节,它涉及到数据清洗、数据转换、数据归一化、数据增强等多种操作,以提高模型性能。在过去的几年里,随着数据规模的增加和复杂性的提高,数据预处理的重要性得到了广泛认识。本文将从以下几个方面进行

    2024年02月19日
    浏览(79)
  • 探索人工智能 | 模型训练 使用算法和数据对机器学习模型进行参数调整和优化

    模型训练是指 使用算法和数据对机器学习模型进行参数调整和优化 的过程。模型训练一般包含以下步骤:数据收集、数据预处理、模型选择、模型训练、模型评估、超参数调优、模型部署、持续优化。 数据收集是指为机器学习或数据分析任务收集和获取用于训练或分析的数

    2024年02月12日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包