【Pytorch】学习记录分享1——Tensor张量初始化与基本操作

这篇具有很好参考价值的文章主要介绍了【Pytorch】学习记录分享1——Tensor张量初始化与基本操作。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 基础资料汇总

资料汇总
pytroch中文版本教程
PyTorch入门教程
B站强推!2023公认最通俗易懂的【PyTorch】教程,200集付费课程(附代码)人工智能_机器
视频
1.PyTorch简介
2.PyTorch环境搭建
basic: python numpy pandas pytroch

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作,DeepLearning,pytorch,学习,人工智能

theory: study mlp cnn transform rnn

model: AlexNet VGG ResNet Yolo SSD

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作,DeepLearning,pytorch,学习,人工智能

2. Tensor张量初始化与基本操作(numpy对比)

2.1 tensor 创建的集中基本方式
import numpy as np
import torch

np_a = np.array([1,2,3]) #ndarrays
tensor_a = torch.tensor([1,2,3]) #tensor
# tensor function and computer
tensor_b = torch.empty(5,3)
tensor_c = torch.randn(5,3) #用于确定模型的输入维度,做数据头尾
tensor_d = torch.zeros(5,3)  #用于 x->y 训练的一个映射 神经网络y truth_label one_hot表示
tensor_e = torch.zeros(5,3,dtype= torch.long) # dtype 数据格式

print("np_a",np_a)
print("tensor_a", tensor_a)
print("tensor_b", tensor_b)
print("tensor_c", tensor_c)
print("tensor_d", tensor_d)
print("tensor_e", tensor_e)

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作,DeepLearning,pytorch,学习,人工智能

import torch

#通过数据直接创建张量:
data = [[1, 2, 3], [4, 5, 6]]
tensor1 = torch.tensor(data)
print("tensor1",tensor1)

#使用特定形状的全零张量:
import torch
tensor2 = torch.zeros(2, 3)
print("tensor2",tensor2)

#使用特定形状的全一张量:
import torch
tensor3 = torch.ones(2, 3)
print("tensor3",tensor3)

#利用随机数创建张量:
import torch
tensor4 = torch.rand(2, 3)
print("tensor4",tensor4)

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作,DeepLearning,pytorch,学习,人工智能

2.2 修改tensor/numpy长度与维度
# 基于已经存在的 tensor进行操作
x = torch.tensor([1,2,3]) 
x.new_ones(5,3)  # 修改 x 的维度

tensor_f = torch.randn_like(x,dtype=torch.float) # 修改x 的类型与维度
print("tensor_f = ", tensor_f)

# 维度查看 np  shape   |  tensor size 层到另外一个层 矩阵相乘
np.array([1, 2, 3]).shape
torch.tensor([1,2,3]).size()

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作,DeepLearning,pytorch,学习,人工智能

# 更改维度 np reshape 
y.size()

y.view(15)

y.view(15,1)

y.view(-1,5) # -1 表示自动计算,根据总维度/5得到

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作,DeepLearning,pytorch,学习,人工智能

2.3 取 tensor/numpy 元素
y = np.array([[1,2,3],[4,5,6]])

np.array([[1,2,3],[4,5,6]])[0]
np.array([[1,2,3],[4,5,6]])[0,:] #":"表示不指定行,默认为该行所有


np.array([[1,2,3],[4,5,6]])[:,0]
print(y[:,0])  # 取第一列
print(y[0,:])  # 取第一行


y[3,0].item() # 常用 loss 反向传导 日志 打印查看 loss 是否减少 查看具体数值

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作,DeepLearning,pytorch,学习,人工智能

2.4 numpy 对象的基本运算
import numpy as np

# 加法
result_array_add = np.array([1, 2]) + np.array([3, 4])

# 减法
result_array_sub = np.array([1, 2]) - np.array([3, 4])

# 乘法
result_array_mul = np.array([1, 2]) * np.array([3, 4])

# 除法
result_array_div = np.array([1, 2]) / np.array([3, 4])

# 数乘
result_array_scalar_mul = 2 * np.array([3, 4])

# 内积
result_array_dot = np.dot(np.array([1, 2]), np.array([3, 4]))

# 外积
result_array_outer = np.outer(np.array([1, 2]), np.array([3, 4]))

print("add = ", result_array_add)
print("sub = ", result_array_sub)
print("mul = ", result_array_mul)
print("div = ", result_array_div)
print("scalar_mul = ", result_array_scalar_mul)
print("dot = ", result_array_dot)
print("outer = ", result_array_outer)

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作,DeepLearning,pytorch,学习,人工智能

2.5 tensor 对象的基本运算
import torch

# 加法
result_tensor_add = torch.tensor([1, 2]) + torch.tensor([3, 4])

# 减法
result_tensor_sub = torch.tensor([1, 2]) - torch.tensor([3, 4])

# 乘法
result_tensor_mul = torch.tensor([1, 2]) * torch.tensor([3, 4])

# 除法
result_tensor_div = torch.tensor([1, 2], dtype=torch.float) / torch.tensor([3, 4], dtype=torch.float)

# 数乘
result_tensor_scalar_mul = 2 * torch.tensor([3, 4])

# 内积
result_tensor_dot = torch.dot(torch.tensor([1, 2]), torch.tensor([3, 4]))

# 外积
result_tensor_outer = torch.ger(torch.tensor([1, 2]), torch.tensor([3, 4]))


print("add = ", result_tensor_add)
print("sub = ", result_tensor_sub)
print("mul = ", result_tensor_mul)
print("div = ", result_tensor_div)
print("scalar_mul = ", result_tensor_scalar_mul)
print("dot = ", result_tensor_dot)
print("outer = ", result_tensor_outer)

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作,DeepLearning,pytorch,学习,人工智能文章来源地址https://www.toymoban.com/news/detail-758040.html

到了这里,关于【Pytorch】学习记录分享1——Tensor张量初始化与基本操作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PyTorch核心--tensor 张量 !!

    文章目录 前言 张量的概念 1. 张量的定义 2. 张量的属性 3. 张量的形状 张量的原理 1. 存储(storage) 2. 形状(shape) 3. 步幅(stride) 张量的操作 1. 数学运算 2. 逻辑运算 3. 索引和切片 4. 形状操作 5. 广播 总结 在PyTorch中,张量是核心数据结构,它是一个多维数组,类似Numpy中

    2024年01月23日
    浏览(42)
  • 【PyTorch】PyTorch中张量(Tensor)统计操作

    第五章 PyTorch中张量(Tensor)统计操作 上文介绍了PyTorch中张量(Tensor)的计算操作,本文将介绍张量的统计操作。 函数 描述 torch.max() 找出张量中的 最大值 torch.argmax() 输出 最大值所在位置 torch.min() 找出张量中的 最小值 torch.argmin() 输出 最小值所在位置 torch.sort() 对一维张量或多

    2024年02月21日
    浏览(43)
  • 【PyTorch】PyTorch中张量(Tensor)计算操作

    第五章 PyTorch中张量(Tensor)计算操作 上文介绍了PyTorch中 张量(Tensor) 的 拆分 和 拼接 操作,本文将介绍 张量 的 计算 操作。 函数 描述 torch.allclose() 比较两个元素是否接近 torch.eq() 逐元素比较是否相等 torch.equal() 判断两个张量是否具有相同的形状和元素 torch.ge() 逐元素比较大

    2024年02月20日
    浏览(49)
  • Pytorch数据类型Tensor张量操作(操作比较全)

    本文只简单介绍pytorch中的对于张量的各种操作,主要列举介绍其大致用法和简单demo。后续更为详细的介绍会进行补充… 1.创建无初始化张量 torch.empty(3, 4) 创建未初始化内存的张量 2.创建随机张量 x = torch.rand(3, 4) 服从0~1间均匀分布 x = torch.randn(3, 4) 服从(0,1)的正态分布

    2024年02月10日
    浏览(47)
  • 【带着学Pytorch】2、张量(Tensor)的介绍与创建

           最开始在出现CPU和GPU, GPU出现主要解决的问题时并行计算,在此基础上的软件层面的工作基本上围绕着并行计算进行的,张量也不例外。 首先,我们先来聊聊 编程语言,python,java ,C,C++等,他们都有的共同特点是什么?在大学中计算机类专业耳熟能详, 算法、数

    2024年02月11日
    浏览(43)
  • 【Megatron-DeepSpeed】张量并行工具代码mpu详解(一):并行环境初始化

    相关博客 【深度学习】【分布式训练】一文捋顺千亿模型训练技术:流水线并行、张量并行和3D并行 【Megatron-DeepSpeed】张量并行工具代码mpu详解(四):张量并行版Embedding层及交叉熵的实现及测试 【Megatron-DeepSpeed】张量并行工具代码mpu详解(三):张量并行层的实现及测试 【Me

    2024年02月12日
    浏览(68)
  • 【1】深度学习之Pytorch——张量(tensor)的尺寸、储存偏移及步长等基本概念

    深度学习的基本概念 深度学习是一种人工神经网络的学习方法。它通过模仿人脑的学习方式来处理信息。深度学习的网络有很多层,每层都能学习到更抽象的概念。这种方法在语音识别、计算机视觉、自然语言处理等领域有很好的应用。 深度学习也有许多应用,这些应用往

    2024年02月02日
    浏览(43)
  • 【Spring Boot 源码学习】ConditionEvaluationReport 日志记录上下文初始化器

    《Spring Boot 源码学习系列》 上篇博文《共享 MetadataReaderFactory 上下文初始化器》, Huazie 带大家详细分析了 SharedMetadataReaderFactoryContextInitializer 。而在 spring-boot-autoconfigure 子模块中预置的上下文初始化器中,除了共享 MetadataReaderFactory 上下文初始化器,还有一个尚未分析。 那么

    2024年04月13日
    浏览(43)
  • 某60区块链安全之未初始化的存储指针实战一学习记录

    学会使用python3的web3模块 学会分析以太坊智能合约未初始化的存储指针漏洞 找到合约漏洞进行分析并形成利用 Ubuntu18.04操作机 python3 在solidity语言中,像动态的数组、struct、mapping这样的复杂数据结构是不能直接在”栈”里面保存的,因为”栈”里只能保存单独的”字”,也就

    2024年02月03日
    浏览(42)
  • 某60区块链安全之未初始化的存储指针实战二学习记录

    学会使用python3的web3模块 学会分析以太坊智能合约未初始化的存储指针漏洞 找到合约漏洞进行分析并形成利用 Ubuntu18.04操作机 python3 在solidity语言中,像动态的数组、struct、mapping这样的复杂数据结构是不能直接在”栈”里面保存的,因为”栈”里只能保存单独的”字”,也就

    2024年02月05日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包