小白理解GPT的“微调“(fine-tuning)

这篇具有很好参考价值的文章主要介绍了小白理解GPT的“微调“(fine-tuning)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

对于GPT-3.5,我们实际上并不能在OpenAI的服务器上直接训练它。OpenAI的模型通常是预训练好的,也就是说,它们已经在大量的语料上进行过训练,学习到了语言的基本规则和模式。

然而,OpenAI提供了一种叫做"微调"(fine-tuning)的方法,让我们可以在预训练好的模型基础上进行进一步的训练,使模型适应特定的任务或领域。这就好比,有人已经用一块木头雕出了一个大概的人形,然后你可以在这个基础上,继续雕刻出更加细致的五官、衣服的纹理等等。

微调的过程需要你拥有一些特定领域的数据,例如在你的例子中,就是和产品品类相关的专业洞察语料。你可以用这些数据来训练模型,让模型学习到这些数据中的特定规则和模式。微调后的模型,就可以更好地处理与这些数据相关的任务。

在具体实现上,你需要将你的数据整理成特定的格式,然后用OpenAI提供的API或者SDK,将数据发送给OpenAI的服务器,服务器会返回模型在你的数据上的输出结果。你可以根据这些结果来调整模型的参数,使模型的性能更好。这个过程可能需要反复进行多次,直到模型的性能达到你的需求为止。

"微调"(fine-tuning)是对GPT-3.5的微调吗?微调后的模型是只有我能用吗?别人也能用吗?还是能使用GPT-3.5的人就能用?

"微调"(fine-tuning)是对预训练模型如GPT-3.5进行的进一步训练,是的。微调的目标是使模型适应特定的任务或领域。例如,如果你微调一个模型来理解医学术语,那么这个模型将在处理医学相关的问题上表现得更好。

微调后的模型,理论上只有进行微调的人或者组织才有直接访问和使用的权限,除非他们选择分享或公开模型。如果你使用你自己的数据和资源进行了微调,那么微调后的模型属于你,别人不能直接使用,除非你授权他们使用。最终的使用权限取决于你与OpenAI之间的协议。

至于其他使用GPT-3.5的人,他们只能使用OpenAI提供的基础GPT-3.5模型,不能直接使用你微调过的模型。他们需要自己收集数据,自己进行微调,才能得到适应他们特定任务或领域的模型。文章来源地址https://www.toymoban.com/news/detail-758244.html

到了这里,关于小白理解GPT的“微调“(fine-tuning)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 微调(Fine-Tune)或不微调:用于 AI 驱动业务转型的大型语言模型

    目录 To Fine-Tune or Not Fine-Tune: Large Language Models for AI-Driven Business Transformation微调或不微调:用于 AI 驱动业务转型的大型语言模型 LLMs - Large Language ModelsLLMs - 大型语言模型 Where do LLMs come from?LLMs 从何而来? How are LLMs trained? LLMs 是如何训练的? 

    2024年02月07日
    浏览(42)
  • 了解大语言模型的参数高效微调(Parameter-Effcient Fine-Tuning)

    🍉 CSDN 叶庭云 : https://yetingyun.blog.csdn.net/ 大语言模型在众多应用领域实现了突破性的进步,显著提升了各种任务的完成度。然而,其庞大的规模也带来了高昂的计算成本。这些模型往往包含数十亿甚至上千亿参数,需要巨大的计算资源来运行。特别是,当需要为特定的下游

    2024年04月14日
    浏览(69)
  • 基于ChatYuan-large-v2 语言模型 Fine-tuning 微调训练 广告生成 任务

    ChatYuan-large-v2 是一个开源的支持中英双语的功能型对话语言大模型,与其他 LLM 不同的是模型十分轻量化,并且在轻量化的同时效果相对还不错,仅仅通过 0.7B 参数量就可以实现 10B 模型的基础效果,正是其如此的轻量级,使其可以在普通显卡、 CPU 、甚至手机上进行推理,而

    2024年02月13日
    浏览(46)
  • 自然语言基础 IMDB下的 MLM (掩码模型) & Bert Fine-tuning (模型微调)

    本文是Hugging Face 上 NLP的一篇代码教程,通过imdb数据集, Fine-tuning微调 Bert预训练模型。 涉及包括: MLM, Bert, Fine-tuning, IMDB, Huggingface Repo 微调的方式是通过调整训练模型的学习率来重新训练模型,这个来自 早期 ACL 2018的一篇paper: 《Universal Language Model Fine-tuning for Text

    2024年02月15日
    浏览(43)
  • 通过ORPO技术微调 llama3大模型(Fine-tune Llama 3 with ORPO)

    1f45bd1e8577af66a05f5e3fadb0b29 ORPO是一种新颖的微调技术,它将传统的监督微调和偏好对齐阶段整合到一个过程中。这减少了训练所需的计算资源和时间。此外,经验结果表明,ORPO在各种模型大小和基准测试中都超过了其他对齐方法。 在本文中,我们将使用ORPO和TRL库来微调新的

    2024年04月23日
    浏览(40)
  • 【论文解读】(如何微调BERT?) How to Fine-Tune BERT for Text Classification?

    论文地址:https://arxiv.org/pdf/1905.05583.pdf 论文年份:2019年05月 论文代码: https://github.com/xuyige/BERT4doc-Classification 论文引用量:1191 (截止2023-04-28) 论文阅读前提:熟悉NLP、深度学习、Transformer、BERT、多任务学习等。 现在NLP任务方式大多都是对BERT进行微调。例如:我们要做一个

    2024年02月07日
    浏览(42)
  • LLMs 缩放指令模型Scaling instruct models FLAN(Fine-tuned LAnguage Net,微调语言网络)

    本论文介绍了FLAN(Fine-tuned LAnguage Net,微调语言网络),一种指导微调方法,并展示了其应用结果。该研究证明,通过在1836个任务上微调540B PaLM模型,同时整合Chain-of-Thought Reasoning(思维链推理)数据,FLAN在泛化、人类可用性和零射推理方面相对于基础模型取得了改进。论文

    2024年02月11日
    浏览(37)
  • 详解AI大模型行业黑话,迅速搞懂提示工程(prompt)、向量工程(embedding)、微调工程(fine-tune)

    大家都在讨论大模型,似乎什么都可以与大模型结合,可当初学者也想上手时,却面临一堆令人头大的词汇,什么Prompt、、Embedding、Fine-tuning,看到瞬间头都大了。一堆英文就算了,还不容易查到正确解释,怎么办呢?别担心,本文就用一种有趣的方式让大家认识它们。 首先

    2024年02月02日
    浏览(40)
  • 【文生图】Stable Diffusion XL 1.0模型Full Fine-tuning指南(U-Net全参微调)

    Stable Diffusion是计算机视觉领域的一个生成式大模型,能够进行文生图(txt2img)和图生图(img2img)等图像生成任务。Stable Diffusion的开源公布,以及随之而来的一系列借助Stable Diffusion为基础的工作使得人工智能绘画领域呈现出前所未有的高品质创作与创意。 今年7月Stability A

    2024年02月03日
    浏览(51)
  • chatgpt fine-tuning 官方文档

    Learn how to customize a model for your application. This guide is intended for users of the new OpenAI fine-tuning API. If you are a legacy fine-tuning user, please refer to our legacy fine-tuning guide. Fine-tuning lets you get more out of the models available through the API by providing: Higher quality results than prompting Ability to train on more exa

    2024年02月09日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包