scikit-learn实现线性回归

这篇具有很好参考价值的文章主要介绍了scikit-learn实现线性回归。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

要学习scikit-learn,我们必须要到scikit-clearn的官网中去查看公式和原理
scikit-learn 官网
scikit-learn 中文社区
进入官网一以后我们找到回归,然后再有监督学习中找到线性模型

scikit-learn实现简单的线性回归

公式:

scikit-learn实现线性回归,机器学习,scikit-learn,线性回归,python

L2范数是指向量中每个元素的平方和的平方根。在数学中,L2范数也称为欧几里得范数,通常用 ∣ ∣ x ∣ ∣ 2 ||x||_2 ∣∣x2 表示,其中x是一个向量。L2范数可用于衡量向量的大小或长度。

L2范数在机器学习和数据科学中经常用于正则化和优化问题中,例如岭回归和支持向量机等算法。在这些情况下,通过对损失函数添加L2正则化项,可以避免过拟合并提高模型的泛化能力。同时,L2范数也被用来作为相似性度量的度量标准,如余弦相似性。

L2范数公式:
∣ ∣ x ∣ ∣ 2 = ( ∑ ∣ x i ∣ 2 ) ||x||_2 = \sqrt{(∑|x_i|^2)} ∣∣x2=(xi2)

代码实现 :

import numpy as np 
import matplotlib.pyplot as plt 

模拟数据

X = np.linspace(0, 10, num=30).reshape(-1, 1)
# 斜率和截距,随机生成
w = np.random.randint(1, 5, size=1)
b = np.random.randint(1, 10, size=1)
# 根据一元一次方程计算目标值y并加上‘噪声’,数据有上下波动
y = X * w + b +np.random.randn(30,1)  # 注意要添加噪声避免出现过拟合
plt.scatter(X,y)  # 将图形展现出来

计算斜率和截距

from sklearn.linear_model import LinearRegression
# 创建对象 
model = LinearRegression(fit_intercept=True) # fit_intercept :是否计算裁距
model.fit(X,y)
print("算法求得的系数,斜率",model.coef_)
print('算法求得的截距',model.intercept_)

和算法求得的斜率和截距进行对比验证

print("这是真实的斜率和截距是",w,b)

获取拟合后的图形

plt.scatter(X,y,color='red')
plt.plot(X,model.coef_*X +model.intercept_,color='green')

scikit-learn实现线性回归,机器学习,scikit-learn,线性回归,python

这个时候我们要哦特别注意的是:
model = LinearRegression(fit_intercept=False) # fit_intercept
在使用 LinearRegression创建对象的时候,fit_intercept参数开启则计算裁距
如果不计算裁距情况,如何获得集合的图形

from sklearn.linear_model import LinearRegression
# 创建对象 
model = LinearRegression(fit_intercept=False) # fit_intercept :是否计算裁距
X_ = np.concatenate([X,np.full(shape=(30,1),fill_value=1)],axis=1)
model.fit(X_,y)
print("算法求得的系数,斜率",model.coef_)
print('算法求得的截距',model.intercept_)
plt.scatter(X,y,color='red')
plt.plot(X,model.coef_[0,0]* X +model.coef_[0,1],color='green')

scikit-learn实现线性回归,机器学习,scikit-learn,线性回归,python
获取系数

np.linalg.inv(X_.T.dot(X_)).dot(X_.T).dot(y)

scikit-learn实现线性回归,机器学习,scikit-learn,线性回归,python

scikit-learn实现多元的线性回归

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import Axes3D  # 绘制三维图像

模拟数据

# 转化为矩阵
x1 = np.random.randint(-150, 150, size=(300, 1))
x2 = np.random.randint(0, 300, size=(300, 1))
# 斜率和截距,都是随机生成的
w = np.random.randint(1, 5, size=2)
b = np.random.randint(1, 10, size=1)
# 根据二元一次方程计算目标值y 并且加上“噪声”,让数据上下波动
y = x1 * w[0] + x2 * w[1] + b + np.random.randn(300, 1)

创建对象

from sklearn.linear_model import LinearRegression
model = LinearRegression()
X = np.concatenate([x1,x2],axis = 1)
model.fit(X,y)
print(model.coef_,model.intercept_)

输出真实的斜率和系数用于与算法得出的数值进行对比

print(w,b)

生成拟合图形

# 特征1:x1
x_axis = np.linspace(-150,150,num=500)
# 特征2 :x2 
y_axis = np.linspace(0,300,num=500)
# 方程 斜率,截距
Z_axis = x_axis * model.coef_[0,0] +y_axis * model.coef_[0,1]+ model.intercept_
fig = plt.figure(figsize=(9,6))
ax = Axes3D(fig)
ax.scatter(x1,x2,y) #三维散点图
ax.plot(x_axis,y_axis,Z_axis)

scikit-learn实现线性回归,机器学习,scikit-learn,线性回归,python
坚持学习,整理复盘
scikit-learn实现线性回归,机器学习,scikit-learn,线性回归,python文章来源地址https://www.toymoban.com/news/detail-758571.html

到了这里,关于scikit-learn实现线性回归的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习实战-系列教程8:SVM分类实战3非线性SVM(鸢尾花数据集/软间隔/线性SVM/非线性SVM/scikit-learn框架)项目实战、代码解读

    本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 SVM分类实战1之简单SVM分类 SVM分类实战2线性SVM SVM分类实战3非线性SVM 使用PolynomialFeatures模块进行预处理,使用这个可以增加数据维度 polynomial_svm_clf.fit(X,y)对当前进行训练传进去X和y数据 SVM分类实战

    2024年02月07日
    浏览(52)
  • 机器学习库Scikit-learn

    本文目录 3.1 背景知识 3.2 Scikit-learn概述 3.3 Scikit-learn主要用法 3.3.1 基本建模流程 3.3.2 数据预处理 3.3.3 监督学习算法 3.3.4 无监督学习算法 3.3.5 评价指标 3.3.6 交叉验证及超参数调优 3.4 Scikit-learn总结 参考文献 Scikit-learn是基于NumPy、SciPy和Matplotlib的开源Python机器学习包,它封装

    2024年02月04日
    浏览(41)
  • 【机器学习笔记】 6 机器学习库Scikit-learn

    Scikit-learn是基于NumPy、 SciPy和 Matplotlib的开源Python机器学习包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数据分析师首选的机器学习工具包。 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括 分类,回归,降维

    2024年02月20日
    浏览(41)
  • 【python】scikit-learn包:机器学习

    只支持python语言 Win+R ,输入指令: pip install -U scikit-learn 借助pandas和numpy 进行数据导入与处理 机器学习的函数大部分只能对数字信息进行处理,无法对string类数据进行分析,因此需要将string类信息进行编码数字化 参考blog链接,可进行补码 给定数据集 [x1,x2,x3,…,y],拟合y与各

    2024年02月01日
    浏览(40)
  • Python数据科学:Scikit-Learn机器学习

    Scikit-Learn使用的数据表示:二维网格数据表 鸢尾花数据集说明: sepal_length:萼片长度 sepal_width:萼片宽度 petal_length:花瓣长度 petal_width:花瓣宽度 species:鸢尾花类型,Iris-setosa(山鸢尾),Iris-versicolor(变色鸢尾),Iris-virginica(维吉尼亚鸢尾) df_iris.head() 样本:鸢尾花数据集矩阵,矩阵

    2024年02月21日
    浏览(50)
  • Python机器学习:Scikit-learn库与应用

    当涉及到Python机器学习时,Scikit-learn是一个非常流行且功能强大的库。它提供了广泛的算法和工具,使得机器学习变得简单而高效。下面是一个简单的Scikit-learn库与应用示例,其中包括代码。 首先,确保你已经安装了Scikit-learn库。你可以使用pip命令来安装它: bash复制代码

    2024年02月19日
    浏览(48)
  • 探索 Scikit-learn:Python 机器学习初级篇

    Scikit-learn 是 Python 中最著名的机器学习库之一,它提供了大量实用的机器学习算法以及相关的工具,可以方便我们进行数据挖掘和数据分析。在这篇文章中,我们将介绍 Scikit-learn 的基本使用,包括如何导入数据、预处理数据、选择和训练模型,以及评估模型的性能。 在使用

    2024年02月17日
    浏览(40)
  • 【机器学习】scikit-learn机器学习中随机数种子的应用与重现

    随机数种子是为了能重现某一次实验生成的随机数而设立的,相同的随机数种子下,生成的随机数序列一样 一、随机数种子基础应用 在python中简单运用随机数种子 结果如下 可以看到out[6]之前加载了随机数种子1之后可以重现第一次随机数的生成结果 二、随机数种子在scikit

    2024年02月01日
    浏览(46)
  • 掌握 Scikit-Learn: Python 中的机器学习库入门

    机器学习 (Machine Learning) 是一个近年来频繁出现在科技新闻, 研究报告, 行业分析和实际应用中的热门领域. 机器学习 (Machine Learning) 正以前所未有的速度影响着我们的生活. 从智能音响的语音识别, 手机摄像头的人脸解锁, 到金融领域的评估, 医疗健康的预测分析. 机器学习的应

    2024年02月07日
    浏览(52)
  • 大数据机器学习深入Scikit-learn:掌握Python最强大的机器学习库

    本篇博客详细介绍了Python机器学习库Scikit-learn的使用方法和主要特性。内容涵盖了如何安装和配置Scikit-learn,Scikit-learn的主要特性,如何进行数据预处理,如何使用监督学习和无监督学习算法,以及如何评估模型和进行参数调优。本文旨在帮助读者深入理解Scikit-learn,并有效

    2024年02月03日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包