【概率方法】重要性采样

这篇具有很好参考价值的文章主要介绍了【概率方法】重要性采样。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


从一个极简分布出发

假设我们有一个关于随机变量 X X X 的函数 f ( X ) f(X) f(X),满足如下分布

p ( X ) p(X) p(X) 0.9 0.1
f ( X ) f(X) f(X) 0.1 0.9

如果我们要对 f ( X ) f(X) f(X) 的期望 E p [ f ( X ) ] \mathbb{E}_p[f(X)] Ep[f(X)] 进行估计,并且我们有一些从 p p p 中采样的样本,那么朴素的想法是,直接关于 p p p 采样,把采样到的值加起来求平均
E p [ f ( X ) ] = 1 n ∑ i f ( x i ) \mathbb{E}_p[f(X)] = \frac{1}{n} \sum_{i} f(x_i) Ep[f(X)]=n1if(xi)
但是问题在于,如果采样的样本个数比较少,很可能采样的全都是 0.1,那么和理论值 0.9*0.1+0.1*0.9=0.18 就相差很大。也就是这样的估计方法方差过大。

这个问题的本质原因在于 f ( X ) f(X) f(X) p ( X ) p(X) p(X)形状的不匹配: f ( X ) f(X) f(X)贡献比较大的值的位置, p ( X ) p(X) p(X)采样的概率很小,一旦采样个数过少, f ( X ) f(X) f(X)不足以产生足够的对 E p [ f ( X ) ] \mathbb{E}_p[f(X)] Ep[f(X)]的贡献,因此产生很大的方差

有什么解决办法呢?


重要性采样

如果我们可以换另一个已知的简单的采样分布 q ( X ) q(X) q(X)使得它和 ∣ p ( X ) f ( X ) ∣ |p(X)f(X)| p(X)f(X)匹配,那么方差就能够变小。(这也是此方法命名为重要性采样的原因)

我们可以给积分里面上下乘以一个 q(X),就可以变换成关于 q q q 求另一个表达式的期望

E p [ f ( X ) ] = ∫ X p ( X ) f ( X ) d X = ∫ X q ( X ) p ( X ) q ( X ) f ( X ) d X = E q [ p ( X ) q ( X ) f ( X ) ] \mathbb{E}_p[f(X)] = \int_X p(X)f(X) dX=\int_X q(X) \frac{p(X)}{q(X)}f(X) dX= \mathbb{E}_q[\frac{p(X)}{q(X)}f(X)] Ep[f(X)]=Xp(X)f(X)dX=Xq(X)q(X)p(X)f(X)dX=Eq[q(X)p(X)f(X)]

由于 p , q , f p,q,f p,q,f 的值我们都是可以计算的,假设 q q q 也可以正常采样,那么这个期望是可以求的。


真的有用?

我们不妨取 q ( X ) q(X) q(X) ∣ p ( X ) f ( X ) ∣ |p(X)f(X)| p(X)f(X) 完美匹配,即 q ( X ) = 0.5 ,    X = x i ,   ∀ i q(X) = 0.5, \ \ X=x_i,\ \forall i q(X)=0.5,  X=xi, i
然后我们关于 q q q 采样,求 p ( X ) q ( X ) f ( X ) \frac{p(X)}{q(X)}f(X) q(X)p(X)f(X) 的期望

q ( X ) q(X) q(X) 0.5 0.5
p ( X ) q ( X ) f ( X ) \frac{p(X)}{q(X)}f(X) q(X)p(X)f(X) 0.18 0.18

好了,你随便从 q q q 采,能和理论值不一样算我输
【概率方法】重要性采样,概率论
无论怎么取,我们估计的期望 E ^ q [ p ( X ) q ( X ) f ( X ) ] = 0.18 ∗ 0.5 + 0.18 ∗ 0.5 = 0.18 \mathbb{\hat{E}}_q[\frac{p(X)}{q(X)}f(X)] =0.18 * 0.5 + 0.18 * 0.5 = 0.18 E^q[q(X)p(X)f(X)]=0.180.5+0.180.5=0.18 和理论值完美符合。


重要性采样真的是有用的。不过这只是一个极端的例子,实际上要取这样的一个 q q q 也并不是很容易,还是要到具体领域问题里面具体分析。文章来源地址https://www.toymoban.com/news/detail-758572.html

到了这里,关于【概率方法】重要性采样的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 性能压力测试的重要性与实施方法

    性能压力测试是在软件开发过程中评估系统在不同负载条件下的表现和稳定性的关键步骤。这种测试是为了确定系统在正常和峰值负载下的性能表现,以验证系统是否能够满足用户需求,同时发现潜在的性能问题并加以解决。   首先,性能压力测试对于确保系统高可用性和稳

    2024年02月14日
    浏览(46)
  • 探究企业角色权限管理的重要性及实践方法

    角色权限管理是企业网盘工具中的重要功能。它是指将特定角色分配给用户,然后根据用户的工作要求为这些角色分配访问权限的过程。通过使用基于角色的权限,组织可以确保员工只能访问执行工作职责所需的文件和文件夹。 那么企业角色权限管理有必要吗? 角色权限管

    2024年02月06日
    浏览(42)
  • 测试技术的重要性与应用:现状、方法和未来展望

    本文分享自天翼云开发者社区《测试技术的重要性与应用:现状、方法和未来展望》,作者:韩****辉   引言 1.测试技术的重要性和挑战 在当今的数字化时代,软件已经渗透到了我们日常生活的方方面面。从手机应用程序到电子商务平台,从工业控制系统到智能家居设备,软件

    2024年02月12日
    浏览(51)
  • 第四章 基于概率论的分类方法:朴素贝叶斯

    朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题。 缺点:对于输⼊数据的准备⽅式较为敏感。 适⽤数据类型:标称型数据。 假设类别为 c 1 , c 2 c_1,c_2 c 1 ​ , c 2 ​ : 如果 p 1 ( x , y ) p 2 ( x , y ) p1(x,y) p2(x,y) p 1 ( x , y ) p 2 ( x , y ) ,那么类别为 c 1 c_1 c

    2024年02月13日
    浏览(44)
  • 【机器学习实战】-基于概率论的分类方法:朴素贝叶斯

    【机器学习实战】读书笔记 **朴素贝叶斯:**称为“ 朴素 ”的原因,整个形式化过程只做最原始、最简单的假设,特征之间没有关联,是统计意义上的独立。 **优点:**在数据较少的情况下仍然有效,可以处理多类别问题。 **缺点:**对于输入数据的准备方式较为敏感。 **适

    2024年03月25日
    浏览(53)
  • Python中进行特征重要性分析的9个常用方法

    特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。 如果有一个包含数十个甚至数百个特征的数据集,每个特征都可能对你的机器学习模型的性能有所贡献。但

    2024年02月07日
    浏览(51)
  • 从抛硬币试验看概率论的基本内容及统计方法

    一般说到概率,就喜欢拿抛硬币做例子。大多数时候,会简单认为硬币正背面的概率各为二分之一,其实事情远没有这么简单。这篇文章会以抛硬币试验为例子并贯穿全文,引出一系列概率论和数理统计的基本内容。这篇文章会涉及的有古典概型、公理化概率、二项分布、正

    2024年04月25日
    浏览(40)
  • 软件兼容性测试的重要性以及一些常用的测试方法

    随着软件应用的不断发展,不同操作系统、浏览器、设备和平台的广泛应用,软件兼容性变得越来越重要。在开发和发布软件之前进行兼容性测试是确保软件在多个环境下正常运行的关键步骤。本文将介绍软件兼容性测试的重要性以及一些常用的测试方法。   首先,软件兼容

    2024年02月15日
    浏览(59)
  • 服务器硬件监控的重要性及监控方法(PIGOSS BSM )

    服务器硬件监控的重要性随着企业业务的不断扩展和数据量的快速增长,服务器硬件的稳定性和可靠性对于企业的正常运营至关重要。因此,服务器硬件监控已成为企业IT管理中的一项重要任务。本文将阐述服务器硬件监控的重要性,以及如何通过监控提高服务器的可靠性和

    2024年01月19日
    浏览(52)
  • 【Python | 机器学习】Python中进行特征重要性分析的9个常用方法(含源代码)

    特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。 特征重要性分析在数据科学和机器学习中扮演着重要的角色,具有以下重要性: 理解数据:特征重要性分析

    2024年02月03日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包