pytorch网络的增删改

这篇具有很好参考价值的文章主要介绍了pytorch网络的增删改。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文介绍对加载的网络的层进行增删改, 以alexnet网络为例进行介绍。

1. 加载网络

import torchvision.models as models  

alexnet =models.alexnet(weights=models.AlexNet_Weights.DEFAULT)
print(alexnet)

pytorch网络的增删改,深度学习,pytorch,php,人工智能

2. 删除网络

在做迁移学习的时候,我们通常是在分类网络的基础上进行修改的。一般会把网络最后的几层删除掉,主要是全局平均池化层、全连接层。只留前面的网络部分作为特征提取器,再次基础上进行其他的任务。

2.1 删除网络任意层

  • 将alexnet的classifier这一部分全删除掉

pytorch网络的增删改,深度学习,pytorch,php,人工智能

del  alexnet.classifer
print(alexnet)

删除classifer模块后,打印结果如下:
pytorch网络的增删改,深度学习,pytorch,php,人工智能
可以看到只剩下featuresavgpool这两个模块了。刚才的classifier就已经被我们删除掉了。

  • 删除classifier模块中的某一层

如果不想把classifier这一模块整体删除,只想删除classifier中比如第6个层

# del alexnet.classifier 
del alexnet.classifier[6]
print(alexnet)

pytorch网络的增删改,深度学习,pytorch,php,人工智能
可以看到classifier中第6层就已经被删除掉了。

2.2 删除网络的最后多层

如果想把网络的连续几层给删除掉,比如classifier中最后的几层删除掉

#------------------删除网络的最后多层--------------------------#
alexnet.classifier = alexnet.classifier[:-2]
print(alexnet)
#-------------------------------------------------------------#

打印信息如下:
pytorch网络的增删改,深度学习,pytorch,php,人工智能

  • 可以看出classifier看出最后2层(5,6)被删除掉了

可以使用切片的方式,保留不需要被删除的层重新赋给classifier模块,没有保留的就被删除了。

3. 修改网络的某一层

  • 没有修改之前alexnet.classifier的第6层是个全连接层,输入通道为4096, 输出通道为1000
    pytorch网络的增删改,深度学习,pytorch,php,人工智能
  • 假设此时,我们想最后一层全连接层的输出,改为1024。此时,你只需要重新定义这层全连接层。
#-----------------修改网络的某一层-----------------------------#
alexnet.classifier[6] = nn.Linear(in_features=4096,out_features=1024)
print(alexnet)
#-------------------------------------------------------------#

打印后,可以看到最后一层的输出由原来的4096改为了1024
pytorch网络的增删改,深度学习,pytorch,php,人工智能

4. 在网络中添加某一层

4.1 每次添加一层

假设我们想在网络最后输出中,再添加两层,分别为ReLUnn.Linear

#-----------------修改网络的某一层-----------------------------#
alexnet.classifier[6] = nn.Linear(in_features=4096,out_features=1024)
# print(alexnet)
#-------------------------------------------------------------#


#-------------网络添加层,每次添加一层--------------------------#
alexnet.classifier.add_module('7',nn.ReLU(inplace=True))
alexnet.classifier.add_module('8',nn.Linear(in_features=1024,out_features=20))
print(alexnet)
#-------------------------------------------------------------#
  • 利用add_module来添加层,第一个参数为层名称,第二个参数为定义layer的内容
  • 我们在alexnet.classifier这个block中进行添加的,添加后打印网络结构如下:
    pytorch网络的增删改,深度学习,pytorch,php,人工智能
  • 可以看到成功的添加了最后2层。

4.2 一次添加多层

如果觉得一层层的添加层比较麻烦,比如我们可以一次性添加一个大的模块new_block

block = nn.Sequential(
    nn.ReLU(inplace=True),
    nn.Linear(in_features=1024,out_features=20)
)

alexnet.add_module('new_block',block)
print(alexnet)

pytorch网络的增删改,深度学习,pytorch,php,人工智能

  • 可以看到在alexnet网络中新增了new_block,该block中包括2层,分别是ReLU层以及Linear层。

以上就是对Pytorch网络增删改的方法,完整的代码如下:文章来源地址https://www.toymoban.com/news/detail-758692.html

import torchvision.models as models  
import torch.nn   as nn 

alexnet =models.alexnet(weights=models.AlexNet_Weights.DEFAULT)
# print(alexnet)

#1.-----------------删除网络的最后一层-------------------------#
# del alexnet.classifier 
# del alexnet.classifier[6]
# print(alexnet)
#-------------------------------------------------------------#

#------------------删除网络的最后多层--------------------------#
# alexnet.classifier = alexnet.classifier[:-2]
# print(alexnet)
#-------------------------------------------------------------#

#-----------------修改网络的某一层-----------------------------#
alexnet.classifier[6] = nn.Linear(in_features=4096,out_features=1024)
# print(alexnet)
#-------------------------------------------------------------#


#-------------网络添加层,每次添加一层--------------------------#
# alexnet.classifier.add_module('7',nn.ReLU(inplace=True))
# alexnet.classifier.add_module('8',nn.Linear(in_features=1024,out_features=20))
# print(alexnet)
#-------------------------------------------------------------#

#-----------------------网络添加层,一次性添加多层--------------#
block = nn.Sequential(
    nn.ReLU(inplace=True),
    nn.Linear(in_features=1024,out_features=20)
)

alexnet.add_module('new_block',block)
print(alexnet)
#-------------------------------------------------------------#


到了这里,关于pytorch网络的增删改的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能学习07--pytorch14--ResNet网络/BN/迁移学习详解+pytorch搭建

    亮点:网络结构特别深 (突变点是因为学习率除0.1?) 梯度消失 :假设每一层的误差梯度是一个小于1的数,则在反向传播过程中,每向前传播一层,都要乘以一个小于1的误差梯度。当网络越来越深的时候,相乘的这些小于1的系数越多,就越趋近于0,这样梯度就会越来越小

    2023年04月11日
    浏览(159)
  • 深度学习实战24-人工智能(Pytorch)搭建transformer模型,真正跑通transformer模型,深刻了解transformer的架构

    大家好,我是微学AI,今天给大家讲述一下人工智能(Pytorch)搭建transformer模型,手动搭建transformer模型,我们知道transformer模型是相对复杂的模型,它是一种利用自注意力机制进行序列建模的深度学习模型。相较于 RNN 和 CNN,transformer 模型更高效、更容易并行化,广泛应用于神

    2023年04月22日
    浏览(64)
  • 深度学习2.神经网络、机器学习、人工智能

    目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、机器学习、人工智能

    2024年02月11日
    浏览(69)
  • 【AI】了解人工智能、机器学习、神经网络、深度学习

    一、深度学习、神经网络的原理是什么? 深度学习和神经网络都是基于对人脑神经系统的模拟。下面将分别解释深度学习和神经网络的原理。 深度学习的原理: 深度学习是一种特殊的机器学习,其模型结构更为复杂,通常包括很多隐藏层。它依赖于神经网络进行模型训练和

    2024年02月06日
    浏览(79)
  • MySql学习2:SQL分类、数据库操作、表操作、数据的增删改查

    SQL分类: DDL:数据定义语言,用来定义数据库对象(数据库、表、字段) DML:数据操作语言,用来对数据库表中的数据进行增删改 DQL:数据库查询语言,用来查询数据库表中的记录 DCL:数据控制语言,用来创建数据库用户、控制数据库的访问权限 查询所有数据库 查询当前

    2024年02月11日
    浏览(53)
  • 人工智能|深度学习——基于对抗网络的室内定位系统

    基于CSI的工业互联网深度学习定位.zip资源-CSDN文库 室内定位技术是工业互联网相关技术的关键一环。 该技术旨在解决于室外定位且取得良好效果的GPS由于建筑物阻挡无法应用于室内的问题 。实现室内定位技术,能够在真实工业场景下实时追踪和调配人员并做到对自动化生产

    2024年02月20日
    浏览(45)
  • Django学习记录:使用ORM操作MySQL数据库并完成数据的增删改查

    数据库操作 MySQL数据库+pymysql Django开发操作数据库更简单,内部提供了ORM框架。 安装第三方模块 ORM可以做的事: 1、创建、修改、删除数据库中的表(不用写SQL语句)。【无法创建数据库】 2、操作表中的数据(不用写SQL语句)。 1、自己创建数据库 1)启动MySQL服务 2)自带

    2024年02月14日
    浏览(63)
  • PyTorch深度学习实战(3)——使用PyTorch构建神经网络

    我们已经学习了如何从零开始构建神经网络,神经网络通常包括输入层、隐藏层、输出层、激活函数、损失函数和学习率等基本组件。在本节中,我们将学习如何在简单数据集上使用 PyTorch 构建神经网络,利用张量对象操作和梯度值计算更新网络权重。 1.1 使用 PyTorch 构建神

    2024年02月08日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包