人工智能|机器学习——循环神经网络的简洁实现

这篇具有很好参考价值的文章主要介绍了人工智能|机器学习——循环神经网络的简洁实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

循环神经网络的简洁实现

如何使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型。 我们仍然从读取时光机器数据集开始。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
 
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

定义模型

高级API提供了循环神经网络的实现。 我们构造一个具有256个隐藏单元的单隐藏层的循环神经网络层rnn_layer。 事实上,我们还没有讨论多层循环神经网络的意义。 现在仅需要将多层理解为一层循环神经网络的输出被用作下一层循环神经网络的输入就足够了。

num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)

我们使用张量来初始化隐状态,它的形状是(隐藏层数,批量大小,隐藏单元数)。

state = torch.zeros((1, batch_size, num_hiddens))
state.shape

torch.Size([1, 32, 256])

通过一个隐状态和一个输入,我们就可以用更新后的隐状态计算输出。 需要强调的是,rnn_layer的“输出”(Y)不涉及输出层的计算: 它是指每个时间步的隐状态,这些隐状态可以用作后续输出层的输入。

X = torch.rand(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, state_new.shape

 (torch.Size([35, 32, 256]), torch.Size([1, 32, 256]))

我们为一个完整的循环神经网络模型定义了一个RNNModel类。 注意,rnn_layer只包含隐藏的循环层,我们还需要创建一个单独的输出层。

#@save
class RNNModel(nn.Module):
    """循环神经网络模型"""
    def __init__(self, rnn_layer, vocab_size, **kwargs):
        super(RNNModel, self).__init__(**kwargs)
        self.rnn = rnn_layer
        self.vocab_size = vocab_size
        self.num_hiddens = self.rnn.hidden_size
        # 如果RNN是双向的(之后将介绍),num_directions应该是2,否则应该是1
        if not self.rnn.bidirectional:
            self.num_directions = 1
            self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
        else:
            self.num_directions = 2
            self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
 
    def forward(self, inputs, state):
        X = F.one_hot(inputs.T.long(), self.vocab_size)
        X = X.to(torch.float32)
        Y, state = self.rnn(X, state)
        # 全连接层首先将Y的形状改为(时间步数*批量大小,隐藏单元数)
        # 它的输出形状是(时间步数*批量大小,词表大小)。
        output = self.linear(Y.reshape((-1, Y.shape[-1])))
        return output, state
 
    def begin_state(self, device, batch_size=1):
        if not isinstance(self.rnn, nn.LSTM):
            # nn.GRU以张量作为隐状态
            return  torch.zeros((self.num_directions * self.rnn.num_layers,
                                 batch_size, self.num_hiddens),
                                device=device)
        else:
            # nn.LSTM以元组作为隐状态
            return (torch.zeros((
                self.num_directions * self.rnn.num_layers,
                batch_size, self.num_hiddens), device=device),
                    torch.zeros((
                        self.num_directions * self.rnn.num_layers,
                        batch_size, self.num_hiddens), device=device))

 训练与预测

在训练模型之前,让我们基于一个具有随机权重的模型进行预测。

device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
d2l.predict_ch8('time traveller', 10, net, vocab, device)

 很明显,这种模型根本不能输出好的结果。 接下来,我们使用定义的超参数调用train_ch8,并且使用高级API训练模型。 

num_epochs, lr = 500, 1
d2l.train_ch8(net, train_iter, vocab, lr, num_epochs, device)

perplexity 1.3, 404413.8 tokens/sec on cuda:0 time travellerit would be remarkably convenient for the historia travellery of il the hise fupt might and st was it loflers

人工智能|机器学习——循环神经网络的简洁实现,# 机器学习【算法】,人工智能,人工智能,机器学习,rnn,循环神经网络

由于深度学习框架的高级API对代码进行了更多的优化, 该模型在较短的时间内达到了较低的困惑度。  文章来源地址https://www.toymoban.com/news/detail-758838.html

到了这里,关于人工智能|机器学习——循环神经网络的简洁实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包