《高级计算机视觉》期末样题汇总

这篇具有很好参考价值的文章主要介绍了《高级计算机视觉》期末样题汇总。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

《高级计算机视觉》期末样题汇总

说明:电子科技大学2022年研究生课程《高级计算机视觉》期末样题。

1. 游程编码

给出下列数据,写出按照行的方向的游程长度编码。
电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

答:

(1,2),(2,4),(3,2)
(1,2),(2,4),(3,2)
(3,2),(5,6)
(3,2),(5,6)
(2,4),(7,4)
(2,4),(7,4)
(2,4),(6,4)
(2,4),(6,2),(2,2)

2. Shannon-Fano coding

(a)Complete the following table using the Shannon-Fano Algorithm.

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

(b) What is the entropy of this source, and in what units? Compare to the above result.

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

3. 计算

Suppose an alphabet consists of 6 symbols {a, b, c, d, e, f}, and the probability for each of the symbol is 1/6 (note, log2(3) = 1.585).

  1. What is the entropy for this set?
  2. Draw the Shannon-Fano tree for this set. What is the average bitrate?
  3. Draw the Huffman tree for this set. What is the average bitrate?
  4. How many bits would we need without compression, assuming fixed-length codewords? What is the compression ratio, compared to the Huffman tree?

答:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

  1. Shannon-Fano tree:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

average bitrate=(2*2bit+4*3bit)/6=2.667bit.

  1. Huffman tree:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

average bitrate=(2*2bit+4*3bit)/6=2.667bit.

  1. 假设码字长度固定,如果不进行压缩,我们需要6*3bit=18bit。与哈夫曼树相比,压缩比是18bit/16bit=1.125。

4. “checkerboard” image

Calculate the entropy of a “checkerboard” image in which half of the pixels are BLACK and half of them are WHITE.

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

5. Huffman Coding

(a) Construct a binary Huffman code for a source S with three symbols A, B and C, having probabilities 0.6, 0.3, and 0.1, respectively. What is its average codeword length, in bits per symbol? What is the entropy of this source?
(b) Let’s now extend this code by grouping symbols into 2-character groups. Compare the performance now, in bits per original source symbol, with the best possible.

答:

(a)

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

average codeword length=(2*2bit+1*1bit)/3=1.667bit.

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能
(b)

2-character groups probability
AA 0.36
AB 0.18
AC 0.06
BA 0.18
BB 0.09
BC 0.03
CA 0.06
CB 0.03
CC 0.01

Huffman tree:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

average codeword length=(1*1bit+2*3bit+3*4bit+1*5bit+2*6bit)/9=4bit

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

the best possible average codeword length is 2.5909bit, and the average codeword length of 2-character groups with Huffman coding is 4bit.

6. Adaptive Huffman Coding

a) What are the advantages of Adaptive Huffman Coding compared to the original Huffman Coding algorithm?

  1. 原始的Huffman算法给出了一种静态的编码树构造方案,要求在实际编码之前统计被编码对象中符号出现的几率,并据此进行编码树的构造。所以应用此方案时必须对输入符号流进行两遍扫描,而在大多数多媒体应用中数据分布的先前统计数据是不可行的。
  2. 另外,静态编码树构造方案不能对符号流的局部统计规律变化做出反应,因为它从始至终都使用完全不变的编码树。而自适应Huffman编码不需要事先构造Huffman树,而是随着编码的进行,逐步构造Huffman树。同时,这种编码方案对符号的统计也动态进行,随着程序的运行,同一个符号的编码可能发生改变(变得更长或更短)。
  3. 再者就静态编码在储存或传输Huffman编码结果之前,还必须先储存或传输Huffman编码树,自适应霍夫曼编码则不需要,这大大节省了内存开销。

b) Assume that the Adaptive Huffman Coding is used to code an information source S with a vocabulary of four letters (a, b, c, d). Before any transmission, the initial coding is a = 00, b =01, c = 10, d = 11. As in the example illustrated in the following figure, a special symbol NEW will be sent before any letter if it is to be sent the first time.

Adaptive Huffman Tree e after sending letters aabb

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

After that, the additional bitstream received by the decoder for the next few letters is 01010010101.

  1. What are the additional letters received?
  2. Draw the adaptive Huffman trees after each of the additional letters is received.

答:

接收到的后续的几个字母分别是:b(01),a(01),c(00 10),c(101)。

从图定位到01为b,然后b的权值+1,此时b的节点权值变为3>a(2),b与a交换位置。

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

从上图定位到01为a,然后a权值+1,此时a的节点权值变为3=b(3),树的节点不做变动。

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

根据上图定位到00是new,意味着有新字符的加入,然后根据下面的10知道新加入的字符是c,然后用包含c和new的子树替换旧的new节点,然后将a的父节点的权值+1变为4>b(3),与b交换位置。

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

根据上图定位到c,然后将相应的节点权值分别+1,发现没有需要置换的节点和子树。

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

7. LZW

Consider the dictionary-based LZW compression algorithm. Suppose the alphabet is the set of symbols {0,1}. Show the dictionary (symbol sets plus associated codes) and output for LZW compression of the input 0110011.

答:

对于字符串0110011。初始字典为{0, 1}。

步骤 前缀 后缀 存在对应码 输出
1 0 (, 0)
2 0 1 (0, 1) no 0 2
3 1 1 (1, 1) no 1 3
4 1 0 (1, 0) no 1 4
5 0 0 (0, 0) no 0 5
6 0 1 (0, 1) yes
7 2 1 (2, 1) no 2 6
8 1 1 (1, 1) yes

输出:0,1,1,0,2,1。对应生成的码表:

2 3 4 5 6
(0, 1) (1, 1) (1, 0) (0, 0) (2, 1)

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

8. LZW

Suppose we have a small 8-bit grayscale image, with all pixels equal to the same pixel value, say 113. Consider the performance of an LZW compression scheme. First initialize codes in the dictionary with pixel values, 0…255. Use 9-bit codes.

For a 4×4 uniform image made of pixel values which are all 113, how many bits will LZW (or WINZIP) use for a compressed version of the image? Explain in detail, using an LZW table. What is the compression ratio?

Hint: recall that the LZW coding algorithm is

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

答:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能
Thus we end up with 5 codes output (at 9 bits each), as opposed to 16 uncompressed 8-bit pixels. Therefore the compression ratio is 128/45 = 2.8444.

9. Huffman coding and Arithmetic coding

Suppose we wish to transmit the 10-character string “MULTIMEDIA”. The characters in the string are chosen from a finite alphabet of 8 characters.

(a) What are the probabilities of each character in the source string?
(b) Compute the entropy of the source string.
(c) If the source string is encoded using Huffman coding, draw the encoding tree and compute the average number of bits needed.
(d) If the source string MULTIMEDIA is now encoded using Arithmetic coding, what is the codeword in fractional decimal representation? How many bits are needed for coding in binary format? How does this compare to the entropy?

答:

(a)

P(A)=P(D)=P(E)=P(L)=P(T)=P(U)=1/10, P(I)=P(M)=1/5.

(b)

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能
(c) Huffman tree:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

average bitrate=(1*2bit+5*3bit+2*4bit)/8=3.125bit

(d)
初始化:
A:[0,0.1), D:[0.1,0.2), E:[0.2,0.3), I:[0.3,0.5), L:[0.5,0.6), M:[0.6,0.8), T:[0.8,0.9), U:[0.9,1).
M:
A:[0.6,0.62), D:[0.62,0.64), E:[0.64,0.66), I:[0.66,0.7), L:[0.7,0.72), M:[0.72,0.76), T:[0.76,0.78), U:[0.78,0.8).
U:
A:[0.78,0.782), D:[0.782,0.784), E:[0.784,0.786), I:[0.786,0.79), L:[0.79,0.792), M:[0.792,0.796), T:[0.796,0.798), U:[0.798,0.8).
L:
A:[0.79,0.7902), D:[0.7902,0.7904), E:[0.7904,0.7906), I:[0.7906,0.791), L:[0.791,0.7912), M:[0.7912,0.7916), T:[0.7916,0.7918), U:[0.7918,0.792).
T:
A:[0.7916,0.79162), D:[0.79162,0.79164), E:[0.79164,0.79166), I:[0.79166,0.7917), L:[0.7917,0.79172), M:[0.79172,0.79176), T:[0.79176,0.79178), U:[0.79178,0.7918).
I:
A:[0.79166,0.791664), D:[0.791664,0.791668), E:[0.791668,0.791672), I:[0.791672,0.79168), L:[0.79168,0.791684), M:[0.791684,0.791692), T:[0.791692,0.791696), U:[0.791696,0.7917).
M:
A:[0.791684,0.7916848), D:[0.7916848,0.7916856), E:[0.7916856,0.7916864), I:[0.7916864,0.791688), L:[0.791688,0.7916888), M:[0.7916888,0.7916904), T:[0.7916904,0.7916912), U:[0.7916912,0.791692).
E:
A:[0.7916856,0.79168568), D:[0.79168568,0.79168576), E:[0.79168576,0.79168584), I:[0.79168584,0.791686), L:[0.791686,0.79168608), M:[0.79168608,0.79168624), T:[0.79168624,0.79168632), U:[0.79168632,0.7916864).
D:
A:[0.79168568,0.791685688), D:[0.791685688,0.791685696), E:[0.791685696,0.791685704), I:[0.791685704,0.79168572), L:[0.79168572,0.791685728), M:[0.791685728,0.791685744), T:[0.791685744,0.791685752), U:[0.791685752,0.79168576).
I:
A:[0.791685704,0.7916857056), D:[0.7916857056,0.7916857072), E:[0.7916857072,0.7916857088), I:[0.7916857088,0.791685712), L:[0.791685712,0.7916857136), M:[0.7916857136,0.7916857168), T:[0.7916857168,0.7916857184), U:[0.7916857184,0.79168572).
A:
A:[0.791685704,0.79168570416), D:[0.79168570416,0.79168570432), E:[0.79168570432,0.79168570448), I:[0.79168570448,0.7916857048), L:[0.7916857048,0.79168570496), M:[0.79168570496,0.79168570528), T:[0.79168570528,0.79168570544), U:[0.79168570544,0.7916857056).
最终的目标区间为:[0.791685704,0.7916857056),我们在这个区间内,任意选一个小数,便可以作为最终的编码小数。但是计算机只能识别0和1,所以我们再将小数转成二进制。我们的诉求是进行最短压缩,所以我们从[0.791685704,0.7916857056)选一个二进制表示最短的小数。这里我们选定0.791685705073178,二进制为:0.110010101010101111101010000101,去掉整数位0以及小数点后,最终的二进制编码为110010101010101111101010000101,长度为30位,平均比特率为3,十分接近熵(2.9219)。

10. Huffman coding and Arithmetic coding

Suppose the alphabet is [A;B;C], and the known probability distribution is PA = 0.5; PB =0.4; PC = 0.1. For simplicity, let’s also assume that both encoder and decoder know that the length of the messages is always 3, so there is no need for a terminator. How many bits are needed to encode the message BBB by Huffman coding? How many bits are needed to encode the message BBB by arithmetic coding?

Huffman tree:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

BBB需要6bit。

Arithmetic coding:
初始化:A:[0,0.5), B:[0.5,0.9), C:[0.9,1).
B:A:[0.5,0.7), B:[0.7,0.86), C:[0.86,0.9).
B:A:[0.7,0.78), B:[0.78,0.844), C:[0.844,0.86).
B:A:[0.78,0.812), B:[0.812,0.8376), C:[0.8376,0.844).
最终的目标区间为[0.78,0.844),在这个区间的任意一个小数都能作为BBB的编码,我们的诉求是进行最短压缩,所以我们从[0.78,0.844)选一个二进制表示最短的小数。这里我们选定0.8125,二进制为:0.1101,去掉整数位0以及小数点后,最终的二进制编码为1101,长度为4bit,比哈夫曼编码少2bit。

11. Arithmetic coding

Assume there is an information source with four characters and their frequencies as follows: A:(10%), B:(40%), C:(20%), and D:(30%). When an encoded message 0.514 is received, what the original string (3 characters) should be?

答:

初始化:
A:[0,0.1), B:[0.1,0.5), C:[0.5,0.7), D:[0.7,1).
因为0.514在E的区间,所以E是第一个字符,再对E的区间按比例划分:
A:[0.5,0.52), B:[0.52,0.6), C:[0.6,0.64), D:[0.64,0.7).
因为0.514在A的区间,所以A是第二个字符,再对A的区间按比例划分:
A:[0.5,0.502), B:[0.502,0.51), C:[0.51,0.514), D:[0.514,0.52).
因为0.514在D的区间,所以D是第三个字符。故原字符串为EAD。

12. 查询

假设一个图像检索系统数据库中有10个图像,其中包含“猫”的图像有5个。对于一个输入“猫”的查询图像Q,图像检索模型的目的是检索到数据库中所有的5个“猫”的图像。假设针对查询图像Q,小李设计了模型M1返回的10个图像的排序为{+,+,-,+,+,-,-,-,-,+}, 小张设计了模型M2返回的10个图像的排序为{+,-,+,+,+,+,-,-,-,-},[注:+表示是“猫”的图片,-表示不是“猫”的图片]。试画出两位同学设计的检索模型的准确率-召回率曲线(Precision-Recall Curve),并判断哪位同学设计的模型更准确一些并说明原因。

[注: 准确率与召回率的定义分别为:Precision = #relevant / #returned; Recall = #relevant / #total relevant]

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

M2的PR曲线完全包住了M1的PR曲线,则可断言M2的性能优于M1。

13. 查询

分别用“√ ”和“×”代表与查询相关和不相关的文档:

(a) 假设针对查询1,有5个相关的文档,搜索引擎检索对查询1的排序(Ranking #1)结果为√×√××√××√√,求其平均准确率(Average Precision);
(b) 假设针对查询2,有3个相关的文档,搜索引擎对查询1的排序(Ranking #2)结果为×√××√×√×××,求其平均准确率(Average Precision);
(c) 求该搜索引擎对两次查询的均值平均准确率(Mean Average Precision)。

(a)

查询序号 准确率(P)
1 1
2 1/2
3 2/3
4 1/2
5 2/5
6 1/2
7 3/7
8 3/8
9 4/9
10 1/2

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

(b)

查询序号 准确率(P)
1 0
2 1/2
3 1/3
4 1/4
5 2/5
6 1/3
7 3/7
8 3/8
9 3/9
10 3/10

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

(c)

Mean Average Precision=1/2 (Average Precision 1+Average Precision 2)=0.4284.

14. 傅立叶变换

傅立叶变换是对图像的频率域信息进行操作的一种重要方法,在对图像进行傅立叶变换后,幅度谱和相位谱分别包含图像的什么信息?如果舍弃相位谱会对图像造成什么影响?如果将幅度谱均匀衰减到原幅度谱的一半,并和相位谱一起重建图像,和原图像相比会有什么变化?

答:

f(x)为连续可积函数,其傅立叶变换定义为:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

通常f(x)的傅立叶变换为复数,可有通用表示式为:F(u)=R(u)+jI(u),R(u)、I(u)分别称为傅立叶变换F(u)的实部和虚部。
其中,|F(u)|=√(R^2 (u)+I^2 (u))称为 f(x)的幅度谱,Φ(u)=arctan (I(u))/R(u) 称为 f(x)的相位谱。
图像的幅度谱代表的是图像各像素点的亮度信息,即该像素应该显示什么颜色。幅度谱虽然存储了各个像素点的幅值信息,但是原像素点的位置已经被打乱,所以仅凭幅度谱是没有办法重构原图像的。幅度谱的中心是低频部分,越亮的地方代表的幅度越大。
相位谱记录的是所有点的相位信息,它保留了图像的边缘以及整体结构的信息,没有它将无法从品频谱还原出原图像。
幅度谱只包含图像的灰度信息,对图像内容起决定性作用的是图像的相位谱。利用相位谱记录的位置信息和幅度谱记录的亮度信息,就可以用双谱重构的方法恢复出原图像。
舍弃相位谱,只用幅度谱逆傅里叶变换出来的图像只有一个亮点,无法恢复出原图像。
如果将幅度谱均匀衰减到原幅度谱的一半,并和相位谱一起重建图像,和原图像相比,亮度为原图像的一半。

15. 积分图像

下图展示了5×5大小的图像像素矩阵。
(1)请用文字解释积分图像的定义,并说明其与传统图像表示的区别与特点;
(2)计算该图像中阴影3×3区域对应的积分图。

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

答:

对于一幅灰度的图像,积分图像中的任意一点(x,y)的值是指从图像的左上角到这个点的所构成的矩形区域内所有的点的灰度值之和,表示如下:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能

传统图像的每个点的灰度值为该像素本身灰度i(x,y),而积分图的每个点的灰度值为ii(x,y)。积分图算法由Crow在1984年首次提出,是为了在多尺度透视投影中提高渲染速度。积分图算法是一种快速计算图像区域和以及图像区域平方和的算法。它的核心思想就是对每一个图像建立起自己的积分图查找表,在图像处理的阶段就可以根据预先建立积分图查找表直接查找从而实现对均值卷积的线性时间计算。做到了卷积执行的时间与窗口大小无关。

该图像中阴影3×3区域对应的积分图:

电子科技大学高级计算机视觉,计算机视觉,计算机视觉,算法,人工智能文章来源地址https://www.toymoban.com/news/detail-759307.html

到了这里,关于《高级计算机视觉》期末样题汇总的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机视觉教程(第2版)1-8章期末复习

    不全面,只针对我们老师画的重点着重标记的! 第一章 绪论 1.计算机视觉 用计算机实现人类的视觉功能,对客观世界中三维场景的感知、加工和解释。 2.图像表达函数 T(x,y,z,t,λ),xyz是空间变量,t是时间变量,λ是辐射的波长。 3.图像文件格式 BMP 位图,GIF图像文件格式标

    2024年02月11日
    浏览(37)
  • 计算机视觉图像处理常用方法汇总

    光线进入眼睛:当光线从一个物体反射或散射出来,进入人的眼睛时,它们通过角膜和晶状体进入眼球内部。 聚焦光线:角膜和晶状体将光线聚焦在视网膜上。晶状体可以通过调整其形状来调节聚焦距离,使物体的图像清晰地映射在视网膜上。 光敏细胞感受光线:视网膜是

    2024年02月07日
    浏览(51)
  • 计算机视觉领域经典模型汇总(2023.09.08

    一、RCNN系列 1、RCNN RCNN是用于目标检测的经典方法,其核心思想是将目标检测任务分解为两个主要步骤:候选区域生成和目标分类。 候选区域生成:RCNN的第一步是生成可能包含目标的候选区域,RCNN使用传统的计算机视觉技术,特别是 选择性搜索(Selective Search)算法 ,这是一

    2024年02月09日
    浏览(47)
  • 计算机视觉教程(第三版)期末复习笔记 第一章(定义、图像显示和表达、像素邻域)

    计算机视觉教程(微课版 第3版) 作者: 章毓晋 出版社: 人民邮电出版社 不一定全,只针对我们期末画的范围,只有一到六章。 目录 第一章 绪论 一、计算机视觉的定义 1. 视觉 2. 计算机视觉 二、常见的应用领域 三、图像的显示方式 1. 图像表达 2. 图像显示设备 3. 表达和显

    2024年02月01日
    浏览(45)
  • 计算机视觉与图形学-神经渲染专题-NeRF汇总大礼包-I

    (说明:如果您认为下面的文章对您有帮助,请您花费一秒时间点击一下最底部的广告以此来激励本人创作,谢谢!!!) 原始NeRF论文 001 NeRF Representing Scenes as Neural Radiance Fields for View Synthesis NeRF综述类 002 NEURAL VOLUME RENDERING NERF AND BEYOND 025 Multimodal Image Synthesis and Editing: A Survey 数

    2024年02月09日
    浏览(49)
  • 【计算机视觉 CV】常用的图像(图片)处理工具汇总【新加坡南洋理工】

    OpenCV的全称是 Intel Open Source Computer Vision Library for C++ ,官网: OpenCV官网 Matlab提供的机器视觉工具箱,全称是 Machine Vision Toolbox for Matlab ,官网: Matlab MV Toolbox官网 Matlab和加州理工提供的相机校正工具箱,全称是 Camera Calibration Toolbox for Matlab ,官网: CC Toolbox官网 Matlab提供的

    2024年04月15日
    浏览(41)
  • 【计算机视觉】特征融合12种经典魔改方法汇总,附配套模型和代码

    特征融合(Feature Fusion)是深度学习中的一种重要技术,它可以帮助模型更好地理解数据的内在结构和规律,提高模型的性能和泛化能力。另外,特征融合还可以提高模型的分类准确率,减少过拟合风险,帮助我们更好地利用数据集。 目前已有的特征融合方法已经取得了显著

    2024年02月03日
    浏览(58)
  • 使用Tensorflow的高级计算机视觉和迁移学习:使用TensorFlow进行文本迁移学习

    迁移学习是机器学习中常用的一种技术,用于利用从一项任务中获得的知识并将其应用于不同但相关的任务。在文本背景下,迁移学习涉及利用经过大量文本数据训练的 预训练模型来提取有用的特征和表示。 这些预先训练的模型已经 学习了通用语言模式 ,可以进行微调或用

    2024年02月03日
    浏览(51)
  • 深度学习应用篇-计算机视觉-语义分割综述[5]:FCN、SegNet、Deeplab等分割算法、常用二维三维半立体数据集汇总、前景展望等

    【深度学习入门到进阶】必看系列,含激活函数、优化策略、损失函数、模型调优、归一化算法、卷积模型、序列模型、预训练模型、对抗神经网络等 专栏详细介绍:【深度学习入门到进阶】必看系列,含激活函数、优化策略、损失函数、模型调优、归一化算法、卷积模型、

    2024年02月16日
    浏览(52)
  • 计算机视觉 计算机视觉识别是什么?

    计算机视觉识别(Computer Vision Recognition)是计算机科学和人工智能领域中的一个重要分支,它致力于使计算机系统能够模拟和理解人类视觉的过程,从而能够自动识别、分析和理解图像或视频中的内容。这一领域的发展旨在让计算机具备视觉感知和理解的能力,使其能够从视

    2024年02月07日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包