矩阵置零[中等]

这篇具有很好参考价值的文章主要介绍了矩阵置零[中等]。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

优质博文:IT-BLOG-CN

一、题目

给定一个m x n的矩阵,如果一个元素为0,则将其所在行和列的所有元素都设为0。请使用原地算法。

示例 1:

矩阵置零[中等],算法题,java,后端,职场和发展,spring,spring boot,算法,数据结构

输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]

示例 2:

矩阵置零[中等],算法题,java,后端,职场和发展,spring,spring boot,算法,数据结构

输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]

m == matrix.length
n == matrix[0].length
1 <= m, n <= 200
-231 <= matrix[i][j] <= 231 - 1

二、代码

【1】使用标记数组: 我们可以用两个标记数组分别记录每一行和每一列是否有零出现。具体地,我们首先遍历该数组一次,如果某个元素为0,那么就将该元素所在的行和列所对应标记数组的位置置为true。最后我们再次遍历该数组,用标记数组更新原数组即可。

class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        boolean[] row = new boolean[m];
        boolean[] col = new boolean[n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (matrix[i][j] == 0) {
                    row[i] = col[j] = true;
                }
            }
        }
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (row[i] || col[j]) {
                    matrix[i][j] = 0;
                }
            }
        }
    }
}

时间复杂度: O(mn),其中m是矩阵的行数,n是矩阵的列数。我们至多只需要遍历该矩阵两次。
空间复杂度: O(m+n),其中m是矩阵的行数,n是矩阵的列数。我们需要分别记录每一行或每一列是否有零出现。

【2】使用两个标记变量: 我们可以用矩阵的第一行和第一列代替方法一中的两个标记数组,以达到O(1)的额外空间。但这样会导致原数组的第一行和第一列被修改,无法记录它们是否原本包含 000。因此我们需要额外使用两个标记变量分别记录第一行和第一列是否原本包含0。在实际代码中,我们首先预处理出两个标记变量,接着使用其他行与列去处理第一行与第一列,然后反过来使用第一行与第一列去更新其他行与列,最后使用两个标记变量更新第一行与第一列即可。

class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        boolean flagCol0 = false, flagRow0 = false;
        for (int i = 0; i < m; i++) {
            if (matrix[i][0] == 0) {
                flagCol0 = true;
            }
        }
        for (int j = 0; j < n; j++) {
            if (matrix[0][j] == 0) {
                flagRow0 = true;
            }
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = matrix[0][j] = 0;
                }
            }
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                if (matrix[i][0] == 0 || matrix[0][j] == 0) {
                    matrix[i][j] = 0;
                }
            }
        }
        if (flagCol0) {
            for (int i = 0; i < m; i++) {
                matrix[i][0] = 0;
            }
        }
        if (flagRow0) {
            for (int j = 0; j < n; j++) {
                matrix[0][j] = 0;
            }
        }
    }
}

时间复杂度: O(mn),其中m是矩阵的行数,n是矩阵的列数。我们至多只需要遍历该矩阵两次。
空间复杂度: O(1)。我们只需要常数空间存储若干变量。

使用一个标记变量: 我们可以对方法二进一步优化,只使用一个标记变量记录第一列是否原本存在0。这样,第一列的第一个元素即可以标记第一行是否出现0。但为了防止每一列的第一个元素被提前更新,我们需要从最后一行开始,倒序地处理矩阵元素。

class Solution {
    public void setZeroes(int[][] matrix) {
        int m = matrix.length, n = matrix[0].length;
        boolean flagCol0 = false;
        for (int i = 0; i < m; i++) {
            if (matrix[i][0] == 0) {
                flagCol0 = true;
            }
            for (int j = 1; j < n; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = matrix[0][j] = 0;
                }
            }
        }
        for (int i = m - 1; i >= 0; i--) {
            for (int j = 1; j < n; j++) {
                if (matrix[i][0] == 0 || matrix[0][j] == 0) {
                    matrix[i][j] = 0;
                }
            }
            if (flagCol0) {
                matrix[i][0] = 0;
            }
        }
    }
}

时间复杂度: O(mn),其中m是矩阵的行数,n是矩阵的列数。我们至多只需要遍历该矩阵两次。
空间复杂度: O(1)。我们只需要常数空间存储若干变量。文章来源地址https://www.toymoban.com/news/detail-759446.html

到了这里,关于矩阵置零[中等]的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 矩阵置零(力扣)思维 JAVA

    矩阵置零(力扣)思维 JAVA

    给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 输入:matrix = [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]] 输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]] 输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]] 提示: m == matrix.length n == matrix[0].length

    2024年02月15日
    浏览(7)
  • Java每日一练(20230515) 阶乘后的零、矩阵置零、两数相除

    Java每日一练(20230515) 阶乘后的零、矩阵置零、两数相除

    目录 1. 阶乘后的零  🌟 2. 矩阵置零  🌟🌟 3. 两数相除  🌟🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日一练 专栏 C/C++每日一练 专栏 Java每日一练 专栏 给定一个整数  n  ,返回  n!  结果中尾随零的数量。 提示  n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1 示例

    2024年02月05日
    浏览(15)
  • [职场] 会计学专业学什么 #其他#知识分享#职场发展

    [职场] 会计学专业学什么 #其他#知识分享#职场发展

    会计学专业学什么 会计学专业属于工商管理学科下的一个二级学科,本专业培养具备财务、管理、经济、法律等方面的知识和能力,具有分析和解决财务、金融问题的基本能力,能在企、事业单位及政府部门从事会计实务以及教学、科研方面工作的工商管理学科高级专门人才

    2024年02月20日
    浏览(14)
  • 【面试经典150 | 矩阵】矩阵置零

    【面试经典150 | 矩阵】矩阵置零

    本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更…… 专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行回顾与总结,文章结构大致如下,部分内容会有增删: Tag:介绍本题牵涉到的知识点、数据结构; 题目来源:

    2024年02月06日
    浏览(12)
  • 学习平台助力职场发展与提升

    学习平台助力职场发展与提升

    近年来,随着互联网技术的发展, 学习平台 逐渐成为了职场发展和提升的必备工具。学习平台通过提供丰富的课程内容、灵活的学习时间和个性化的学习路径,帮助职场人士更好地提升自己的技能和知识储备,为职场发展打下坚实的基础。 学习平台的优势在于提供了丰富多

    2024年02月11日
    浏览(14)
  • 73. 矩阵置零

    给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 示例 1: 输入:matrix = [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]] 示例 2: 输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]] 输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]] 提示: m == matrix.lengt

    2024年02月17日
    浏览(6)
  • 0073. 矩阵置零

    0073. 矩阵置零

    73. 矩阵置零 https://leetcode.cn/problems/set-matrix-zeroes/ 所谓m+n,则是你可以构建一个: int row[] = new int[m]; int col[] = new int[n]; 来记录哪几行,哪几列需要被设置成0 即,你在二维数组中找到一个等于0的位置,用两个参数,row/col来记录他的位置,然后就和上面的解法二一样,只不过这

    2024年02月12日
    浏览(7)
  • 【HashMap】 73. 矩阵置零

    首先遍历矩阵找到所有的0元素 将其的行和列索引记录下俩 遍历矩阵 将所有的需要更新的元素进行更新 也就是查找hashmap中的每一个元素进行更新 查找行或者列是否在hashmap中

    2024年02月14日
    浏览(5)
  • Leetcode.73矩阵置零

    Leetcode.73矩阵置零

    给定一个  m x n  的矩阵,如果一个元素为  0  ,则将其所在行和列的所有元素都设为  0  。请使用  原地  算法

    2024年02月11日
    浏览(6)
  • leetcode 73.矩阵置零

    题目链接:leetcode 73 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。 1)示例 1: 输入:matrix = [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]] 2)示例 2: 输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]] 输出:[[0,0,0,0],[0,4,5,0],[0,

    2024年02月07日
    浏览(6)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包