什么?通过 Prometheus 编写巡检脚本

这篇具有很好参考价值的文章主要介绍了什么?通过 Prometheus 编写巡检脚本。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原文来源: https://tidb.net/blog/894d0118

背景

笔者最近在驻场,发现这里的 tidb 集群是真的多,有将近150套集群。而且集群少则6个节点起步,多则有200多个节点。在这么庞大的集群体量下,巡检就变得非常的繁琐了。

那么有没有什么办法能够代替手动巡检,并且能够快速准确的获取到集群相关信息的方法呢?答案是,有但不完全有。其实可以利用 tidb 的 Prometheus 来获取集群相关的各项数据,比如告警就是一个很好的例子。可惜了,告警只是获取了当前数据进行告警判断,而巡检需要使用一段时间的数据来作为判断的依据。而且,告警是已经达到临界值了,巡检却是要排查集群的隐患,提前开始规划,避免出现异常。

那直接用 Prometheus 获取一段时间的数据,并且把告警值改低不就行了?

认识 PromQL

要使用 Prometheus ,那必须要先了解什么是 PromQL 。

PromQL查询语言和日常使用的数据库SQL查询语言(SELECT * FROM ...)是不同的,PromQL 是一种 嵌套的函数式语言 ,就是我们要把需要查找的数据描述成一组嵌套的表达式,每个表达式都会评估为一个中间值,每个中间值都会被用作它上层表达式中的参数,而查询的最外层表达式表示你可以在表格、图形中看到的最终返回值。比如下面的查询语句:

histogram_quantile(  # 查询的根,最终结果表示一个近似分位数。
  0.9,  # histogram_quantile() 的第一个参数,分位数的目标值
  # histogram_quantile() 的第二个参数,聚合的直方图
  sum by(le, method, path) (
    # sum() 的参数,直方图过去5分钟每秒增量。
    rate(
      # rate() 的参数,过去5分钟的原始直方图序列
      demo_api_request_duration_seconds_bucket{job="demo"}[5m]
    )
  )
)

然后还需要认识一下告警的 PromQL 中,经常出现的一些函数:

rate

用于计算变化率的最常见函数是 rate() rate() 函数用于计算在指定时间范围内计数器平均每秒的增加量。因为是计算一个时间范围内的平均值,所以我们需要在序列选择器之后添加一个范围选择器。

irate

由于使用 rate 或者 increase 函数去计算样本的平均增长速率,容易陷入长尾问题当中,其无法反应在时间窗口内样本数据的突发变化。

例如,对于主机而言在 2 分钟的时间窗口内,可能在某一个由于访问量或者其它问题导致 CPU 占用 100%的情况,但是通过计算在时间窗口内的平均增长率却无法反应出该问题。

为了解决该问题,PromQL 提供了另外一个灵敏度更高的函数***irate(v range-vector)***。 irate 同样用于计算区间向量的计算率,但是其反应出的是瞬时增长率。

histogram_quantile

获取数据的分位数。histogram_quantile(φ scalar, b instant-vector) 函数用于计算历史数据指标一段时间内的分位数。该函数将目标分位数 (0 ≤ φ ≤ 1) 和直方图指标作为输入,就是大家平时讲的 pxx,p50 就是中位数,参数 b 一定是包含 le 这个标签的瞬时向量,不包含就无从计算分位数了,但是计算的分位数是一个预估值,并不完全准确,因为这个函数是假定每个区间内的样本分布是线性分布来计算结果值的,预估的准确度取决于 bucket 区间划分的粒度,粒度越大,准确度越低。

该部分引用: Prometheus基础相关--PromQL 基础(2) 想学习的同学可以去看看原文

修改 PromQL

要让巡检使用 PromQL ,就必须要修改告警中的 PromQL。这里需要介绍一个函数:max_over_time(range-vector),它是获取区间向量内每个指标的最大值。其实还有其他这类时间聚合函数,比如avg_over_time、min_over_time、sum_over_time等等,但是我们只需要获取到最大值,来提醒 dba 就行了。

Prometheus 是支持子查询的,它允许我们首先以指定的步长在一段时间内执行内部查询,然后根据子查询的结果计算外部查询。子查询的表示方式类似于区间向量的持续时间,但需要冒号后添加了一个额外的步长参数:***[<duration>:<resolution>]***。

举个例子:

# 原版
sum(rate(tikv_thread_cpu_seconds_total{name=~"(raftstore|rs)_.*"}[1m])) by (instance)
​
# 修改
max_over_time(avg(rate(tikv_thread_cpu_seconds_total{name=~"(raftstore|rs)_.*"}[1m])) by (instance)[24h:1m])

这是获取 TiKV raftstore 线程池 CPU 使用率的告警项。原版是直接将1分钟内所有线程的变化率相加,而笔者的修改版是将1分钟内所有线程的使用率取平均值,并且从此刻向后倒24小时内,每一分钟执行一次获取平均线程使用率的查询,再取最大值。

也就是说,从24小时前,到现在,每分钟执行一次(步长为1分钟): avg(rate(tikv_thread_cpu_seconds_total{name=~"(raftstore|rs)_.*"}[1m])) by (instance) ,并获取其中最大的一次值。这样就满足了我们需要使用一段时间的数据来判断集群是否有风险的依据了。

然后我们可以选取合适的 PromQL 来加上时间聚合函数和查询时间及步长信息:

# TiKV 1
'TiDB.tikv.TiKV_server_is_down': {
    'pql': 'probe_success{group="tikv",instance=~".*"} == 0',
    'pql_max': '',
    'note': 'TiKV 服务不可用'
},
'TiDB.tikv.TiKV_node_restart': {
    'pql': 'changes(process_start_time_seconds{job="tikv",instance=~".*"}[24h])> 0',
    'pql_max': 'max(changes(process_start_time_seconds{job="tikv",instance=~".*"}[24h]))',
    'note': 'TiKV 服务5分钟内出现重启'
},
'TiDB.tikv.TiKV_GC_can_not_work': {
    'pql_max': '',
    'pql': 'sum(increase(tikv_gcworker_gc_tasks_vec{task="gc", instance=~".*"}[2d])) by (instance) < 1 and (sum(increase('
           'tikv_gc_compaction_filter_perform{instance=~".*"}[2d])) by (instance) < 1 and sum(increase('
           'tikv_engine_event_total{cf="write",db="kv",type="compaction",instance=~".*"}[2d])) by (instance) >= 1)',
    'note': 'TiKV 服务GC无法工作'
},
# TiKV 2
'TiDB.tikv.TiKV_raftstore_thread_cpu_seconds_total': {
    'pql_max': 'max_over_time(avg(rate(tikv_thread_cpu_seconds_total{name=~"(raftstore|rs)_.*"}[1m])) by (instance)[24h:1m])',
    'pql': 'max_over_time(avg(rate(tikv_thread_cpu_seconds_total{name=~"(raftstore|rs)_.*"}[1m])) by (instance)[24h:1m])  > 0.8',
    'note': 'TiKV raftstore 线程池 CPU 使用率过高'
},
'TiDB.tikv.TiKV_approximate_region_size': {
    'pql_max': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_raftstore_region_size_bucket{instance=~".*"}[1m])) '
               'by (le,instance))[24h:1m])',
    'pql': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_raftstore_region_size_bucket{instance=~".*"}[1m])) '
           'by (le,instance))[24h:1m]) > 1073741824',
    'note': 'TiKV split checker 扫描到的最大的 Region approximate size 大于 1 GB'
},
'TiDB.tikv.TiKV_async_request_write_duration_seconds': {
    'pql_max': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_storage_engine_async_request_duration_seconds_bucket'
               '{type="write", instance=~".*"}[1m])) by (le, instance, type))[24h:1m])',
    'pql': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_storage_engine_async_request_duration_seconds_bucket'
           '{type="write", instance=~".*"}[1m])) by (le, instance, type))[24h:1m]) > 1',
    'note': 'TiKV 中Raft写入响应时间过长'
},
'TiDB.tikv.TiKV_scheduler_command_duration_seconds': {
    'pql_max': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_scheduler_command_duration_seconds_bucket[20m])) by (le, instance, type)  / 1000)[24h:20m]) ',
    'pql': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_scheduler_command_duration_seconds_bucket[20m])) by (le, instance, type)  / 1000)[24h:20m])  > 20 ',
    'note': 'TiKV 调度器请求响应时间过长'
},
'TiDB.tikv.TiKV_scheduler_latch_wait_duration_seconds': {
    'pql_max': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_scheduler_latch_wait_duration_seconds_bucket[20m])) by (le, instance, type))[24h:20m]) ',
    'pql': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_scheduler_latch_wait_duration_seconds_bucket[20m])) by (le, instance, type))[24h:20m])  > 20',
    'note': 'TiKV 调度器锁等待响应时间过长'
},
'TiDB.tikv.TiKV_write_stall': {
    'pql_max': 'max_over_time(delta(tikv_engine_write_stall{instance=~".*"}[10m])[24h:10m])',
    'pql': 'max_over_time(delta('
           'tikv_engine_write_stall{instance=~".*"}[10m])[24h:10m]) > 10',
    'note': 'TiKV 中存在写入积压'
},
​
# TiKV 3
'TiDB.tikv.TiKV_server_report_failure_msg_total': {
    'pql_max': 'max_over_time(sum(rate(tikv_server_report_failure_msg_total{type="unreachable"}[10m])) BY (instance)[24h:10m])',
    'pql': 'max_over_time(sum(rate(tikv_server_report_failure_msg_total{type="unreachable"}[10m])) BY (instance)[24h:10m]) > 10',
    'note': 'TiKV 节点报告失败次数过多'
},
'TiDB.tikv.TiKV_channel_full_total': {
    'pql_max': 'max_over_time(sum(rate(tikv_channel_full_total{instance=~".*"}[10m])) BY (type, instance)[24h:10m])',
    'pql': 'max_over_time(sum(rate(tikv_channel_full_total{instance=~".*"}[10m])) BY (type, instance)[24h:10m]) > 0',
    'note': 'TIKV 通道已占满 tikv 过忙'
},
'TiDB.tikv.TiKV_raft_log_lag': {
    'pql_max': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_raftstore_log_lag_bucket{instance=~".*"}[1m])) by (le,instance))[24h:10m])',
    'pql': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_raftstore_log_lag_bucket{instance=~".*"}[1m])) by (le, '
           'instance))[24h:10m]) > 5000',
    'note': 'TiKV 中 raft 日志同步相差过大'
},
'TiDB.tikv.TiKV_thread_unified_readpool_cpu_seconds': {
    'pql_max': 'max_over_time(avg(rate(tikv_thread_cpu_seconds_total{name=~"unified_read_po*", instance=~".*"}[1m])) by (instance)[24h:1m])',
    'pql': 'max_over_time(avg(rate(tikv_thread_cpu_seconds_total{name=~"unified_read_po*", instance=~".*"}[1m])) '
           'by (instance)[24h:1m]) > 0.7',
    'note': 'unifiled read 线程池使用率大于70%'
},
'TiDB.tikv.TiKV_low_space': {
    'pql_max': 'sum(tikv_store_size_bytes{type="available"}) by (instance) / sum(tikv_store_size_bytes{type="capacity"}) by (instance)',
    'pql': 'sum(tikv_store_size_bytes{type="available"}) by (instance) / sum(tikv_store_size_bytes{type="capacity"}) by (instance) < 0.3',
    'note': 'TiKV 当前存储可用空间小于阈值'
},

由于有的告警项是获取了5分钟或者10分钟的数据,在写步长的时候也要同步修改为5分钟或者10分钟,保持一致可以保证,检查能覆盖选定的全部时间段,并且不会重复计算造成资源浪费。

顺带一提,如果不加 max_over_time 可以获取到带有时间戳的全部数据,而不是只获取到最大的一个数据。这个带时间戳的全部数据可以方便画图,像grafana那样展示数据趋势。

巡检脚本

了解了以上所有知识,我们就可以开始编写巡检脚本了。

这是笔者和同事共同编写的一部分巡检脚本,最重要的是 tasks 中的 PromQL ,在脚本执行之前要写好 PromQL,其他部分可以随意更改。如果一次性巡检天数太多,比如一次巡检一个月的时间,Prometheus 可能会因检查数据太多而报错的,所以使用的时候要注意报错信息,避免漏掉一些巡检项。

# -*- coding: utf-8 -*-
import subprocess
import re
import datetime
import requests
import sys
import pandas as pd
​
days = None
​
​
def get_cluster_name():
    try:
        command = "tiup cluster list"
        result = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        output, error = result.communicate()
        cluster_name_match = re.search(r'([a-zA-Z0-9_-]+)\s+tidb\s+v', output.decode('utf-8'))
        if cluster_name_match:
            return cluster_name_match.group(1)
        else:
            return None
    except Exception as e:
        print("An error occurred:", e)
        return None
​
​
def display_cluster_info(cluster_name):
    if not cluster_name:
        print("Cluster name not found.")
        return
​
    try:
        command = "tiup cluster display {0}".format(cluster_name)
        result = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        output, error = result.communicate()
        return output.decode('utf-8')
    except Exception as e:
        print("An error occurred:", e)
​
​
def extract_id_role(output):
    id_role_dict = {}
    lines = output.strip().split("\n")
    for line in lines[2:]:
        parts = line.split()
        if parts[0].startswith('10.'):
            node_id, role = parts[0], parts[1]
            id_role_dict[node_id] = role
    return id_role_dict
​
​
def get_prometheus_ip(data_dict):
    prometheus_ip = None
    for key, value in data_dict.items():
        if value == 'prometheus':
            prometheus_ip = key
            break
    return prometheus_ip
​
​
def get_tasks():
    global days
    tasks = {
        # TiKV 1
        'TiDB.tikv.TiKV_server_is_down': {
            'pql': 'probe_success{group="tikv",instance=~".*"} == 0',
            'pql_max': '',
            'note': 'TiKV 服务不可用'
        },
        'TiDB.tikv.TiKV_node_restart': {
            'pql': 'changes(process_start_time_seconds{job="tikv",instance=~".*"}[24h])> 0',
            'pql_max': 'max(changes(process_start_time_seconds{job="tikv",instance=~".*"}[24h]))',
            'note': 'TiKV 服务5分钟内出现重启'
        },
        'TiDB.tikv.TiKV_GC_can_not_work': {
            'pql_max': '',
            'pql': 'sum(increase(tikv_gcworker_gc_tasks_vec{task="gc", instance=~".*"}[2d])) by (instance) < 1 and (sum(increase('
                   'tikv_gc_compaction_filter_perform{instance=~".*"}[2d])) by (instance) < 1 and sum(increase('
                   'tikv_engine_event_total{cf="write",db="kv",type="compaction",instance=~".*"}[2d])) by (instance) >= 1)',
            'note': 'TiKV 服务GC无法工作'
        },
        # TiKV 2
        'TiDB.tikv.TiKV_raftstore_thread_cpu_seconds_total': {
            'pql_max': 'max_over_time(avg(rate(tikv_thread_cpu_seconds_total{name=~"(raftstore|rs)_.*"}[1m])) by (instance)[24h:1m])',
            'pql': 'max_over_time(avg(rate(tikv_thread_cpu_seconds_total{name=~"(raftstore|rs)_.*"}[1m])) by (instance)[24h:1m])  > 0.8',
            'note': 'TiKV raftstore 线程池 CPU 使用率过高'
        },
        'TiDB.tikv.TiKV_approximate_region_size': {
            'pql_max': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_raftstore_region_size_bucket{instance=~".*"}[1m])) '
                       'by (le,instance))[24h:1m])',
            'pql': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_raftstore_region_size_bucket{instance=~".*"}[1m])) '
                   'by (le,instance))[24h:1m]) > 1073741824',
            'note': 'TiKV split checker 扫描到的最大的 Region approximate size 大于 1 GB'
        },
        'TiDB.tikv.TiKV_async_request_write_duration_seconds': {
            'pql_max': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_storage_engine_async_request_duration_seconds_bucket'
                       '{type="write", instance=~".*"}[1m])) by (le, instance, type))[24h:1m])',
            'pql': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_storage_engine_async_request_duration_seconds_bucket'
                   '{type="write", instance=~".*"}[1m])) by (le, instance, type))[24h:1m]) > 1',
            'note': 'TiKV 中Raft写入响应时间过长'
        },
        'TiDB.tikv.TiKV_write_stall': {
            'pql_max': 'max_over_time(delta(tikv_engine_write_stall{instance=~".*"}[10m])[24h:10m])',
            'pql': 'max_over_time(delta('
                   'tikv_engine_write_stall{instance=~".*"}[10m])[24h:10m]) > 10',
            'note': 'TiKV 中存在写入积压'
        },
​
        # TiKV 3
        'TiDB.tikv.TiKV_server_report_failure_msg_total': {
            'pql_max': 'max_over_time(sum(rate(tikv_server_report_failure_msg_total{type="unreachable"}[10m])) BY (instance)[24h:10m])',
            'pql': 'max_over_time(sum(rate(tikv_server_report_failure_msg_total{type="unreachable"}[10m])) BY (instance)[24h:10m]) > 10',
            'note': 'TiKV 节点报告失败次数过多'
        },
        'TiDB.tikv.TiKV_channel_full_total': {
            'pql_max': 'max_over_time(sum(rate(tikv_channel_full_total{instance=~".*"}[10m])) BY (type, instance)[24h:10m])',
            'pql': 'max_over_time(sum(rate(tikv_channel_full_total{instance=~".*"}[10m])) BY (type, instance)[24h:10m]) > 0',
            'note': 'TIKV 通道已占满 tikv 过忙'
        },
        'TiDB.tikv.TiKV_raft_log_lag': {
            'pql_max': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_raftstore_log_lag_bucket{instance=~".*"}[1m])) by (le,instance))[24h:10m])',
            'pql': 'max_over_time(histogram_quantile(0.99, sum(rate(tikv_raftstore_log_lag_bucket{instance=~".*"}[1m])) by (le, '
                   'instance))[24h:10m]) > 5000',
            'note': 'TiKV 中 raft 日志同步相差过大'
        },
        'TiDB.tikv.TiKV_thread_unified_readpool_cpu_seconds': {
            'pql_max': 'max_over_time(avg(rate(tikv_thread_cpu_seconds_total{name=~"unified_read_po*", instance=~".*"}[1m])) by (instance)[24h:1m])',
            'pql': 'max_over_time(avg(rate(tikv_thread_cpu_seconds_total{name=~"unified_read_po*", instance=~".*"}[1m])) '
                   'by (instance)[24h:1m]) > 0.7',
            'note': 'unifiled read 线程池使用率大于70%'
        },
        'TiDB.tikv.TiKV_low_space': {
            'pql_max': 'sum(tikv_store_size_bytes{type="available"}) by (instance) / sum(tikv_store_size_bytes{type="capacity"}) by (instance)',
            'pql': 'sum(tikv_store_size_bytes{type="available"}) by (instance) / sum(tikv_store_size_bytes{type="capacity"}) by (instance) < 0.3',
            'note': 'TiKV 当前存储可用空间小于阈值'
        },
    }
    for key, value in tasks.items():
        for inner_key, inner_value in value.items():
            if isinstance(inner_value, str) and 'pql' in inner_key:
                value[inner_key] = inner_value.replace("24h:", f"{24 * days}h:").replace("[24h]", f"[{24 * days}h]")
    return tasks
​
​
def request_prome(prometheus_address, query):
    try:
        response = requests.get('http://%s/api/v1/query' % prometheus_address, params={'query': query})
        return response
    except:
        return None
​
​
def has_response(prometheus_address, query):
    response = request_prome(prometheus_address, query)
    if not response:
        return False
    try:
        if response.json()["data"]['result']:
            return True
        else:
            return False
    except:
        return False
​
​
def check_prome_alive(prometheus_address):
    # dummy query is used to judge if prometheus is alive
    dummy_query = 'probe_success{}'
    return has_response(prometheus_address, dummy_query)
​
​
def find_alive_prome(prometheus_addresses):
    if check_prome_alive(prometheus_addresses):
        return prometheus_addresses
    return None
​
​
# ip:port -> ip_port
def decode_instance(instance):
    return instance.replace(':', '_')
​
​
def check_metric(alert_name, prometheus_address, pql, is_value, pql_max):
    record = []
    try:
        is_warning = "异常"
        response = request_prome(prometheus_address, pql)
        alert_name = alert_name.split('.')
        result = response.json()['data']['result']
​
        # 判断是否出现异常
        if len(result) == 0:
            is_warning = "正常"
            if pql_max == '':
                result = [{'metric': {}, 'value': [0, '0']}]
            else:
                response = request_prome(prometheus_address, pql_max)
                result = response.json()['data']['result']
​
        for i in result:
            # 判断是否按节点显示
            if 'instance' in i['metric']:
                instance = i['metric']['instance']
                node = decode_instance(instance)
            else:
                node = '集群'
            # 判断是否有type
            if 'type' in i['metric']:
                type = i['metric']['type']
            else:
                type = '无类型'
            value = i['value'][1]
​
            if value == 'NaN':
                value = 0
            else:
                value = round(float(value), 3)
            message = "%s,%s,%s,%s,%s,%s,%s,%s" % (
                datetime.datetime.now(), node, alert_name[1], alert_name[2], type, is_warning, is_value, value)
            print(message)
            record.append(message)
    except Exception as e:
        print(alert_name[2] + "----An error occurred check_metric:", e)
        return
    return record
​
​
def csv_report(record):
    data = pd.DataFrame([line.split(',') for line in record],
                        columns=['timestamp', 'ip_address', 'service', 'event_type', 'type', 'status', 'description',
                                 'value'])
    grouped = data.groupby("service")
    writer = pd.ExcelWriter("inspection_report.xlsx", engine="xlsxwriter")
    for name, group in grouped:
        group.to_excel(writer, sheet_name=name, index=False)
        worksheet = writer.sheets[name]
        for i, col in enumerate(group.columns):
            column_len = max(group[col].astype(str).str.len().max(), len(col)) + 2
            worksheet.set_column(i, i, column_len)
    writer.save()
​
​
def run_tasks(role_metrics, prometheus_address):
    record = []
    for alert in role_metrics:
        pql = role_metrics[alert]['pql']
        is_value = role_metrics[alert]['note']
        pql_max = role_metrics[alert]['pql_max']
        message = check_metric(alert, prometheus_address, pql, is_value, pql_max)
        for data in message:
            record.append(data)
    csv_report(record)
​
​
def run_script(prometheus_addresses):
    active_prometheus_address = find_alive_prome(prometheus_addresses)
​
    # check if all prometheus are down
    if not active_prometheus_address:
        sys.exit()
    tasks = get_tasks()
    run_tasks(tasks, active_prometheus_address)
​
​
def get_user_input():
    global days
    try:
        user_input = int(input("请输入需要巡检的天数: "))
        days = user_input
    except ValueError:
        print("输入无效,请输入一个有效的数字。")
​
​
if __name__ == "__main__":
    # 输入巡检天数
    get_user_input()
​
    prometheus_ip = '10.3.65.136:9091'
    # prometheus_ip = None
    if prometheus_ip is None:
        cluster_name = get_cluster_name()
        cluster_info = display_cluster_info(cluster_name)
        id_role_dict = extract_id_role(cluster_info)
        print(id_role_dict)
        prometheus_ip = get_prometheus_ip(id_role_dict)
    print(prometheus_ip)
    run_script(prometheus_ip)

总结

一个完善的巡检脚本的编写是一个长期的工作。因为时间有限,笔者只编写了基于 Prometheus 的一部分巡检项,有兴趣的同学可以继续编写更多巡检项。

目前巡检脚本都是基于 Prometheus 的数据来作判断,但是在真实的巡检当中,dba还会查看一些 Prometheus 没有的数据,比如表的健康度、一段时间内的慢SQL、热力图、日志信息等等,这些信息在后面一些时间,可能会慢慢入到巡检脚本中。

最后,笔者能力有限,如有错误的地方欢迎指出。


----------------------------------------------------

作者介绍:caiyfc,来自神州数码钛合金战队,是一支致力于为企业提供分布式数据库TiDB整体解决方案的专业技术团队。团队成员拥有丰富的数据库从业背景,全部拥有TiDB高级资格证书,并活跃于TiDB开源社区,是官方认证合作伙伴。目前已为10+客户提供了专业的TiDB交付服务,涵盖金融、证券、物流、电力、政府、零售等重点行业。 文章来源地址https://www.toymoban.com/news/detail-759656.html

到了这里,关于什么?通过 Prometheus 编写巡检脚本的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • prometheus通过blackbox-exporter监控web站点证书

    线上站点普遍是https,因此监控https web站点的证书的过期时间,是一个基础性需求。例如,证书过期会导致tls握手失败,进而导致用户无法正常访问web站点。 blackbox-expoter是一个web服务,它暴露了一个接口,访问这个接口能使得它去访问目标站点,并向客户端响应相关的web站点

    2024年01月20日
    浏览(48)
  • prometheus采集服务的jmx数据,grafana通过dashboard展示jmx数据

    重命名目录 http://ip:9090 http://ip:9090/metrics 启动grafana 查看grafana状态 账号和密码都是:admin prometheus的URL是http://ip:9090 添加成功后保存数据源,成功如下所示 修改配置文件prometheus.yml 重启prometheus 发现成功采集debezium服务的jmx数据 grafana官网搜索你想监控的服务的dashboard: https

    2024年02月16日
    浏览(55)
  • Debezium系列之:prometheus采集debezium的jmx数据,grafana通过dashboard展示debezium的jmx数据

    需要采集debezium的jmx数据,并把重要的指标展示出来 采取的方案是prometheus采集debezium的jmx数据,通过grafana展示出来,可以快速查看某个连接器重要的指标信息

    2024年02月13日
    浏览(49)
  • Prometheus配置通过file_sd_configs中每个目标的module标签信息重置每个目标的metrics_path

    配置方式如下: 这里: 通过前 3 个 relabel_config 从 address 和 port 标签生成 host 和 port module 标签的值通过最后一个 relabel_config 直接作为 metrics_path 所以 module 标签的值会覆盖通过 regex 生成的默认路径 例如,targets.json 中有以下目标: 那么 Prometheus 最终会使用以下 metrics_path: /app1 /app

    2024年02月10日
    浏览(37)
  • 编写Tcl脚本创建整个Vivado工程并通过Git对Tcl脚本进行管理

    简介 Tcl(Tool Command Language)是一种简单易学、高效的脚本语言,可用于多种应用程序和操作系统。Xilinx Vivado是一款用于FPGA开发的综合软件平台,其内部集成了Tcl Shell,可以通过编写Tcl脚本自动化完成Vivado的工程创建和配置,从而提高工作效率和代码复用性。本文将介绍如何

    2024年02月16日
    浏览(51)
  • Prometheus服务器、Prometheus被监控端、Grafana、Prometheus服务器、Prometheus被监控端、Grafana

    day03Prometheus概述部署Prometheus服务器环境说明:配置时间安装Prometheus服务器添加被监控端部署通用的监控exporterGrafana概述部署Grafana展示node1的监控信息监控MySQL数据库配置MySQL配置mysql exporter配置mysql exporter配置prometheus监控mysql自动发现机制概述基于文件自动发现修改Prometheus使

    2024年02月14日
    浏览(47)
  • Prometheus详解(十)——Prometheus容器监控

    今天继续给大家介绍Linux运维相关知识,本文主要内容是Prometheus容器监控。 我们有时需要使用Prometheus监控Kubernetes集群中的容器,包括容器的内存、CPU、网络I/O等资源。在Kubernetes中,有内置的cAdvisor组件,用于Prometheus的容器监控设置。 接下来,我们就开始Prometheus利用cAdvis

    2024年02月06日
    浏览(63)
  • Prometheus详解(三)——Prometheus安装部署

    今天继续给大家介绍Linux运维相关知识,本文主要内容是Prometheus安装部署。在本文中,我们直接将Prometheus安装在了Kubernetes集群上,并没有在物理设备上部署。 Prometheus在Kubernetes集群上的安装需要有一块存储空间,在这里,我们使用NFS来提供存储卷的挂载。我们的NFS服务器I

    2024年01月22日
    浏览(42)
  • Prometheus详解(四)——Prometheus简单使用

    今天继续给大家介绍Linux运维相关知识,本文主要内容是Prometheus简单使用。 在上文Prometheus详解(三)——Prometheus安装部署中,我们介绍了Prometheus的安装和部署。今天,我们就来介绍一下Prometheus的简单使用。 首先,我们先来介绍一下Prometheus的页面。Prometheus的页面如下所示

    2023年04月08日
    浏览(34)
  • Prometheus详解(一)——Prometheus简介与特点

    今天继续给大家介绍Linux运维相关知识,本文主要内容是Prometheus简介与特点。 Prometheus是由SoundCloud开发的开源监控系统,由GO语言编写而成,采用Pull的方式来获取监控信息,并且提供了多维度的数据模型和灵活的查询接口。Prometheus既支持通过静态文件配置监控对象,还支持自

    2024年02月03日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包