线性代数本质系列(一)向量,线性组合,线性相关,矩阵

这篇具有很好参考价值的文章主要介绍了线性代数本质系列(一)向量,线性组合,线性相关,矩阵。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇

向量究竟是什么?
向量的线性组合,基与线性相关
矩阵与线性相关

矩阵乘法与线性变换
三维空间中的线性变换
行列式
逆矩阵,列空间,秩与零空间
克莱姆法则
非方阵
点积与对偶性
叉积
以线性变换眼光看叉积
基变换
特征向量与特征值
抽象向量空间
快速计算二阶矩阵特征值
张量,协变与逆变和秩

前言

天道中丁元英说过一句话:佛说,看山是山,看水是水,普通大众寄情山水之间时,如神一般的丁元英却早已看透文化属性;今天我们不研究这么高深的哲学,回到线性代数,向量,矩阵对于我来讲只不过是一堆数字,但切换到神的视角,他们却是几何与变换,瞬间让线性代数变得更加立体生动,今天我们就从几何的角度去探索线性代数的本质。

向量究竟是什么?

通过“究竟”一词可见,对于向量的含义,存在不同的解释,目前,主要有三种解释:

⑴从物理学家的角度看:向量是指向空间的箭头,它有两个属性:长度和方向,无论怎么移动他都是同一个向量。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

⑵从计算机角度看:向量是有序的数字列表,例如对于房价预测而言,房子的面积,房间数就可以看作是一个向量: [ 80 4 ] \begin{bmatrix}80\\4\end{bmatrix} [804]

⑶从数学家的角度看:向量可以是任何东西,只要具有向量和向量加法,标量和向量乘法这两种运算规律的事务都可以看作是向量

v ⃗ + w ⃗ \vec{v} +\vec{w} v +w

2 v ⃗ 2\vec{v} 2v

例如:
[ − 4 10 ] + [ 20 1 ] = [ 16 11 ] \begin{equation*} \begin{bmatrix} -4\\ 10 \end{bmatrix} +\begin{bmatrix} 20\\ 1 \end{bmatrix} =\begin{bmatrix} 16\\ 11 \end{bmatrix} \end{equation*} [410]+[201]=[1611]

2 ∗ [ 80 4 ] = [ 160 8 ] \begin{equation*} 2*\begin{bmatrix} 80\\ 4 \end{bmatrix} =\begin{bmatrix} 160\\ 8 \end{bmatrix} \end{equation*} 2[804]=[1608]

由于数学家的角度过于抽象,这就出现了开头讲的,换个角度看问题,从几何角度看待线性代数,对于向量而言,就是在特定坐标系下,以原点为起点,指向某个方向的箭头:
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

现在已经有了使用几何方式表达向量的方法,下面让我们从几何角度重新审视向量的两种运算:

对于 v ⃗ + w ⃗ \vec{v} +\vec{w} v +w 而言,移动w到v的末尾,连接v的头和w的尾就是结果向量。

线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

对于 2 v ⃗ 2\vec{v} 2v 而言,向量的方向不变,长度变为原来的两倍,如果标量是小数,则是缩小向量的长度,如果是负数,则是反方向缩放向量的长度。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

向量的线性组合,基于线性相关

基向量:

“单位“是数学中必不可少的概念,缺少单位,数字变得毫无意义,同样,对于使用几何表示向量而言,也有存在单位的概念,这就是“基向量”,它代表指向x,y轴,长度为1的向量,我们分别用 i ⃗ \vec{i} i j ⃗ \vec{j} j 表示。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

有了基的概念后,向量的表示可以转换成以基为参照,例如向量 [ 3 − 2 ] \begin{bmatrix} 3\\ -2 \end{bmatrix} [32],则可以表示成: 3 ∗ i ⃗ + 2 ∗ j ⃗ 3*\vec{i} +2*\vec{j} 3i +2j
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

这里需要注意,前面我们选择指向x,y轴,且长度为1的向量作为基向量,但也可以选择不同的基,不同的基代表不同的坐标系,则对于一个向量而言,它代表不同的几何意义,例如,选择下面的v和w向量作为基向量时,向量 [ 1.5 − 0.62 ] \begin{bmatrix} 1.5\\ -0.62 \end{bmatrix} [1.50.62]代表的几何形状与 i ⃗ \vec{i} i j ⃗ \vec{j} j 为基向量时的形状是不一样的。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

向量线性组合:

无论选择什么样的基向量,向量都可以写成更一般的形式: a v ⃗ + b w ⃗ a\vec{v} +b\vec{w} av +bw 我们称为向量的线性组合,a,b是标量,也称为缩放因子,v和w是向量,选择不同的缩放因子,向量的线性组合可以表示整个向量空间,也就是生成的向量可以到达平面中所有点。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

但如果两个向量恰好共线时,则向量组合后的结果向量只能落在该直线上,我们称共线的两个向量是线性相关的,否则是线性无关。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

更特殊地,当这两个向量都是0向量时,则向量组合后的结果向量只能落在原点上。

概括一下,所有可以被给定向量,用线性组合来表示的那些向量的集合,被称为给定向量张成的空间,两个不共线的向量,在二维空间中,其线性组合所张成的空间是整个二维空间;而在三维空间中,其张成的空间是三维空间中的一个面。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

在三维空间中,三个向量的线性组合,如果其中一个向量在另两个向量张成的平面内,我们称该向量与其他两个向量线性相关,这三个向量的线性组合仍然是一个平面,只有三个向量互不线性相关时,那么这三个向量的线性组合才能张成整个三维空间。

矩阵与线性相关

矩阵:

先说结论:前面讲的向量可以视为一种带箭头的几何结构,那么矩阵就可以视为一种对几何的变换。

在线性代数中,变换是一种函数,将输入映射成输出,输入是向量,输出也是向量,同理,当输入是矩阵时,可以把矩阵分解成多个向量,那么输出也就是矩阵,变换有很多种,线性代数中只讨论线性变换,线性变换要求,任意直线变换后仍然是直线,且原点位置变换后保持不变,从几何角度看,线性变换就是拉伸,缩放,旋转。

下图变换后,直线变弯曲了,所以是非线性变换
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

下图变换后,原点位置变了,所以属于非线性变换
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

那我们如何求一个向量经过变换后的向量坐标呢?假设现有一个向量,在原始坐标系下可以表示成: v ⃗ = ( − 1 ) i ⃗ + 2 ∗ j ⃗ \vec{v} =( -1)\vec{i} +2*\vec{j} v =(1)i +2j
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

现在对向量v施加一个线性变换,根据线性变换的特性,变换后,网格仍然平行且间隔均等,假设两个基向量变换后的坐标如下图所示,向量v与两个基向量经过相同的变换变成新的基向量,那么,向量v经过变换后的向量仍然可以表示成:
v ⃗ t r a n s f o r m e d = ( − 1 ) i ⃗ t r a n s f o r m e d + 2 ∗ j t r a n s f o r m e d \begin{equation*} \vec{v}{}_{transformed} =( -1)\vec{i}{}_{transformed} +2*j{}_{transformed} \end{equation*} v transformed=(1)i transformed+2jtransformed
只不过基向量变成了变换后的基向量。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

如上图
i ⃗ t r a n s f o r m e d = [ 1 − 2 ] \vec{i}{}_{transformed} =\begin{bmatrix} 1\\ -2 \end{bmatrix} i transformed=[12], j ⃗ t r a n s f o r m e d = [ 3 0 ] \vec{j}{}_{transformed} =\begin{bmatrix} 3\\ 0 \end{bmatrix} j transformed=[30]

变换后的v就等于: v ⃗ = ( − 1 ) [ 1 − 2 ] + 2 ∗ [ 3 0 ] = [ 5 2 ] \vec{v} =( -1)\begin{bmatrix} 1\\ -2 \end{bmatrix} +2*\begin{bmatrix} 3\\ 0 \end{bmatrix} =\begin{bmatrix} 5\\ 2 \end{bmatrix} v =(1)[12]+2[30]=[52]

也就是说,如果我们知道两个基向量变换后的向量,那么求任何一个向量经过变换后的向量的过程可以用下图所表示:
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

更进一步的,我们将两个基向量变换后的坐标向量用矩阵的形式组织起来,这个矩阵就是线性变换矩阵T。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

对于任意一个向量A,例如, [ 7 2 ] \begin{bmatrix} 7\\ 2 \end{bmatrix} [72],求该线性变换T对该向量的作用时,只需要用矩阵与向量相乘即可: A t r a n s f o r m e d = [ 3 2 − 2 1 ] [ 7 2 ] = 7 [ 3 − 2 ] + 2 [ 2 1 ] A_{transformed} =\begin{bmatrix} 3 & 2\\ -2 & 1 \end{bmatrix}\begin{bmatrix} 7\\ 2 \end{bmatrix} =7\begin{bmatrix} 3\\ -2 \end{bmatrix} +2\begin{bmatrix} 2\\ 1 \end{bmatrix} Atransformed=[3221][72]=7[32]+2[21]

如果换个视角,反过来看,如果给出一个矩阵乘法: [ 3 2 − 2 1 ] [ 7 2 ] \begin{bmatrix} 3 & 2\\ -2 & 1 \end{bmatrix}\begin{bmatrix} 7\\ 2 \end{bmatrix} [3221][72],我们可以把矩阵第一列 [ 3 − 2 ] \begin{bmatrix} 3\\ -2 \end{bmatrix} [32]当作新的基向量 i ⃗ \vec{i} i ,把矩阵的第二列 [ 2 1 ] \begin{bmatrix} 2\\ 1 \end{bmatrix} [21]当作新的基向量 j ⃗ \vec{j} j ,根据向量的几何表示,向量 [ 7 2 ] \begin{bmatrix} 7\\ 2 \end{bmatrix} [72]用新的基向量表成: i ⃗ \vec{i} i 向正方向放大7倍, j ⃗ \vec{j} j 向正方向放大2倍,将变换后的向量相加就形成了结果向量。
线性代数本质系列(一)向量,线性组合,线性相关,矩阵,线性代数,线性代数,矩阵,机器学习

再举个例子,看看逆时针旋转90度的变换矩阵是什么, i ⃗ \vec{i} i [ 1 0 ] \begin{bmatrix} 1\\ 0 \end{bmatrix} [10]变成 [ 0 1 ] \begin{bmatrix} 0\\ 1 \end{bmatrix} [01] j ⃗ \vec{j} j [ 0 1 ] \begin{bmatrix} 0\\ 1 \end{bmatrix} [01]变成 [ − 1 0 ] \begin{bmatrix} -1\\ 0 \end{bmatrix} [10],所以该变换矩阵为: [ 0 − 1 1 0 ] \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix} [0110]

到此,就已经证明了我们在开头所说的:矩阵是一种线性变换。文章来源地址https://www.toymoban.com/news/detail-759835.html

到了这里,关于线性代数本质系列(一)向量,线性组合,线性相关,矩阵的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数本质系列(二)矩阵乘法与复合线性变换,行列式,三维空间线性变换

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第二篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与复合线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性

    2024年02月02日
    浏览(33)
  • 线性代数第四章 向量组的线性相关性

    一.向量、向量组 1.向量 n个有次序的数a1,a2,...,an所组成的数组称为n维向量,这n个数称为该向量的n个分量,第i个数ai称为第 i个分量 n维向量可以写成一行,也可以写成一列, 在没有指明是行向量还是列向量时,均为列向量 2.向量组 若干个同维数的列向量(行向量)所组成的

    2024年02月10日
    浏览(34)
  • 线性代数的学习和整理20,关于向量/矩阵和正交相关,相似矩阵等

    目录 1 什么是正交 1.1 正交相关名词 1.2 正交的定义 1.3 正交向量 1.4 正交基 1.5 正交矩阵的特点 1.6 正交矩阵的用处 orthogonal set 正交向量组 正交变换 orthogonal matrix 正交矩阵 orthogonal basis 正交基 orthogonal decomposition 正交分解 正交的定义:内积为0 正交一定线性无关 其实不共线也

    2024年02月09日
    浏览(37)
  • 线性代数的学习和整理20,关于向量/矩阵和正交相关,相似矩阵等(草稿)

    目录 1 什么是正交 1.1 正交相关名词 1.2 正交的定义 1.3 正交向量 1.4 正交基 1.5 正交矩阵的特点 1.6 正交矩阵的用处 orthogonal set 正交向量组 正交变换 orthogonal matrix 正交矩阵 orthogonal basis 正交基 orthogonal decomposition 正交分解 正交的定义:内积为0 正交一定线性无关 其实不共线也

    2024年02月09日
    浏览(31)
  • 线性代数的学习和整理9:线性代数的本质(未完成)

    目录 1 相关英语词汇 1.1 元素 1.2 计算 1.3 特征 1.4 线性相关 1.5 各种矩阵 1.6 相关概念 2 可参考经典线性代数文档 2.1 学习资料 2.2 各种文章和视频 2.3 各种书 2.4 下图是网上找的思维导图 3 线性代数的本质 3.1 线性代数是第2代数学模型 一般的看法 大牛总结说法: 3.2   线性代

    2024年02月09日
    浏览(42)
  • 线性代数的本质笔记

    课程来自b站发现的《线性代数的本质》,可以帮助从直觉层面理解线性代数的一些基础概念,以及把一些看似不同的数学概念解释之后,发现其实有内在的关联。 这里只对部分内容做一个记录,完整内容请自行观看视频~ 数字在线性代数中起到的主要作用就是缩放向量 线性

    2024年02月08日
    浏览(29)
  • 线性代数-矩阵的本质

    线性代数-矩阵的本质

    2024年02月11日
    浏览(32)
  • 线性代数的本质——几何角度理解

    B站网课来自 3Blue1Brown的翻译版,看完醍醐灌顶,强烈推荐: 线性代数的本质 本课程从几何的角度翻译了线代中各种核心的概念及性质,对做题和练习效果有实质性的提高,下面博主来总结一下自己的理解 在物理中的理解是一个有 起点和终点的方向矢量 ,而在计算机科学中

    2024年02月02日
    浏览(49)
  • 线性代数的本质(十一)——复数矩阵

    矩阵 A A A 的元素 a i j ∈ C a_{ij}inComplex a ij ​ ∈ C ,称为复矩阵。现将实数矩阵的一些概念推广到复数矩阵,相应的一些性质在复数矩阵同样适用。 定义 :设复矩阵 A = ( a i j ) m × n A=(a_{ij})_{mtimes n} A = ( a ij ​ ) m × n ​ 矩阵 A ˉ = ( a i j ‾ ) bar A=(overline{a_{ij}}) A ˉ = ( a i

    2024年02月03日
    浏览(25)
  • 线性代数的本质(四)——行列式

    行列式引自对线性方程组的求解。考虑两个方程的二元线性方程组 { a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 begin{cases} a_{11}x_1+a_{12}x_2=b_1 \\\\ a_{21}x_1+a_{22}x_2=b_2 end{cases} { a 11 ​ x 1 ​ + a 12 ​ x 2 ​ = b 1 ​ a 21 ​ x 1 ​ + a 22 ​ x 2 ​ = b 2 ​ ​ 可使用消元法,得 ( a 11 a 22 − a

    2024年02月07日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包