Kafka学习笔记(一)

这篇具有很好参考价值的文章主要介绍了Kafka学习笔记(一)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


第1章 Kafka概述

1.1 消息队列(Message Queue)

1.1.1 传统消息队列的应用场景

Kafka学习笔记(一),消息队列,kafka,学习,笔记

1.1.2 消息队列的两种模式

  1. 点对点模式一对一,消费者主动拉取数据,消息收到后消息清除)
    消息生产者生产消息发送到Queue中,然后消息消费者从Queue中取出并且消费消息。

    消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息。Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
    Kafka学习笔记(一),消息队列,kafka,学习,笔记
    2. 发布/订阅模式(一对多,消费者消费数据之后不会清除消息)
    消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。
    Kafka学习笔记(一),消息队列,kafka,学习,笔记

1.2 定义

Kafka是一个分布式的基于发布/订阅模式的消息队列,主要应用于大数据实时处理领域。
Kafka学习笔记(一),消息队列,kafka,学习,笔记

  1. Producer :消息生产者,就是向kafka broker发消息的客户端;
  2. Consumer :消息消费者,向kafka broker取消息的客户端;
  3. Consumer Group (CG):消费者组,由多个consumer组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
  4. Broker :一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。
  5. Topic :可以理解为一个队列,生产者和消费者面向的都是一个topic;
  6. Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列;
  7. Replica:副本,为保证集群中的某个节点发生故障时,该节点上的partition数据不丢失,且kafka仍然能够继续工作,kafka提供了副本机制,一个topic的每个分区都有若干个副本,一个leader和若干个follower。
  8. leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是leader。
  9. follower:每个分区多个副本中的“从”,实时从leader中同步数据,保持和leader数据的同步。leader发生故障时,某个follower会成为新的leader。

第2章 Kafka快速入门

2.1 安装部署

2.1.1 集群规划

hadoop102hadoop103hadoop104
zkzkzk
kafkakafkakafka

2.1.2 jar包下载

http://kafka.apache.org/downloads

2.1.3 集群部署

  1. 解压安装包
[atguigu@hadoop102 software]$ tar -zxvf kafka_2.11-2.4.1.tgz -C /opt/module/
  1. 修改解压后的文件名称
[atguigu@hadoop102 module]$ mv kafka_2.11-2.4.1/ kafka
  1. 在/opt/module/kafka目录下创建logs文件夹
[atguigu@hadoop102 kafka]$ mkdir logs
  1. 修改配置文件
[atguigu@hadoop102 kafka]$ cd config/
[atguigu@hadoop102 config]$ vi server.properties
输入以下内容:
#broker的全局唯一编号,不能重复
broker.id=0
#删除topic功能使能
delete.topic.enable=true
#处理网络请求的线程数量
num.network.threads=3
#用来处理磁盘IO的现成数量
num.io.threads=8
#发送套接字的缓冲区大小
socket.send.buffer.bytes=102400
#接收套接字的缓冲区大小
socket.receive.buffer.bytes=102400
#请求套接字的缓冲区大小
socket.request.max.bytes=104857600
#kafka运行日志存放的路径
log.dirs=/opt/module/kafka/logs
#topic在当前broker上的分区个数
num.partitions=1
#用来恢复和清理data下数据的线程数量
num.recovery.threads.per.data.dir=1
#segment文件保留的最长时间,超时将被删除
log.retention.hours=168
#配置连接Zookeeper集群地址
zookeeper.connect=hadoop102:2181,hadoop103:2181,hadoop104:2181/kafka
  1. 配置环境变量
[atguigu@hadoop102 module]$ sudo vi /etc/profile

#KAFKA_HOME
export KAFKA_HOME=/opt/module/kafka
export PATH=$PATH:$KAFKA_HOME/bin

[atguigu@hadoop102 module]$ source /etc/profile
  1. 分发安装包
[atguigu@hadoop102 module]$ xsync kafka/
注意:分发之后记得配置其他机器的环境变量
7)分别在hadoop103和hadoop104上修改配置文件/opt/module/kafka/config/server.properties中的broker.id=1、broker.id=2
注:broker.id不得重复
  1. 启动集群
依次在hadoop102、hadoop103、hadoop104节点上启动kafka
[atguigu@hadoop102 kafka]$ kafka-server-start.sh -daemon $KAFKA_HOME/config/server.properties
[atguigu@hadoop103 kafka]$ kafka-server-start.sh -daemon  $KAFKA_HOME/config/server.properties
[atguigu@hadoop104 kafka]$ kafka-server-start.sh -daemon  $KAFKA_HOME/config/server.properties
  1. 关闭集群
[atguigu@hadoop102 kafka]$ bin/kafka-server-stop.sh
[atguigu@hadoop103 kafka]$ bin/kafka-server-stop.sh
[atguigu@hadoop104 kafka]$ bin/kafka-server-stop.sh
  1. kafka群起脚本
for i in `cat /opt/module/hadoop-2.7.2/etc/hadoop/slaves`
do
echo "========== $i ==========" 
ssh $i '/opt/module/kafka/bin/kafka-server-start.sh -daemon /opt/module/kafka/config/server.properties'
echo $?
done

2.2 Kafka命令行操作

  1. 查看当前服务器中的所有topic
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka --list
  1. 创建topic
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka \
--create --replication-factor 3 --partitions 1 --topic first

选项说明:
–topic 定义topic名
–replication-factor 定义副本数
–partitions 定义分区数

  1. 删除topic
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka \
--delete --topic first

需要server.properties中设置delete.topic.enable=true否则只是标记删除。

  1. 发送消息
[atguigu@hadoop102 kafka]$ bin/kafka-console-producer.sh \
--broker-list hadoop102:9092 --topic first
>hello world
>atguigu  atguigu
  1. 消费消息
[atguigu@hadoop103 kafka]$ bin/kafka-console-consumer.sh \
--bootstrap-server hadoop102:9092 --from-beginning --topic first

[atguigu@hadoop103 kafka]$ bin/kafka-console-consumer.sh \
--bootstrap-server hadoop102:9092 --from-beginning --topic first

–from-beginning:会把主题中以往所有的数据都读取出来。

  1. 查看某个Topic的详情
[atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka \
--describe --topic first
  1. 修改分区数
[atguigu@hadoop102 kafka]$bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka --alter --topic first --partitions 6

第3章 Kafka架构深入

3.1 Kafka工作流程及文件存储机制

Kafka学习笔记(一),消息队列,kafka,学习,笔记
Kafka中消息是以topic进行分类的,生产者生产消息,消费者消费消息,都是面向topic的。

topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,且每条数据都有自己的offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个offset,以便出错恢复时,从上次的位置继续消费。

Kafka文件存储机制:
Kafka学习笔记(一),消息队列,kafka,学习,笔记

由于生产者生产的消息会不断追加到log文件末尾,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制,将每个partition分为多个segment。每个segment对应两个文件——“.index”文件和“.log”文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,first这个topic有三个分区,则其对应的文件夹为first-0,first-1,first-2。

00000000000000000000.index
00000000000000000000.log
00000000000000170410.index
00000000000000170410.log
00000000000000239430.index
00000000000000239430.log

index和log文件以当前segment的第一条消息的offset命名。下图为index文件和log文件的结构示意图。
Kafka学习笔记(一),消息队列,kafka,学习,笔记

“.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message的物理偏移地址。

3.2 Kafka生产者

3.2.1 分区策略

  1. 分区的原因
  • 方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;
  • 可以提高并发,因为可以以Partition为单位读写了。
  1. 分区的原则
    我们需要将producer发送的数据封装成一个ProducerRecord对象。
    Kafka学习笔记(一),消息队列,kafka,学习,笔记
  • 指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
  • 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
  • 既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。

3.2.2 数据可靠性保证

为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到producer发送的数据后,都需要向producer发送ack(acknowledgement确认收到),如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。

Kafka学习笔记(一),消息队列,kafka,学习,笔记

  1. 副本数据同步策略
方案 优点 缺点
半数以上完成同步,就发送ack 延迟低 选举新的leader时,容忍n台节点的故障,需要2n+1个副本
全部完成同步,才发送ack 选举新的leader时,容忍n台节点的故障,需要n+1个副本 延迟高

Kafka选择了第二种方案,原因如下:

  • 同样为了容忍n台节点的故障,第一种方案需要2n+1个副本,而第二种方案只需要n+1个副本,而Kafka的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
  • 虽然第二种方案的网络延迟会比较高,但网络延迟对Kafka的影响较小。
  1. ISR

采用第二种方案之后,设想以下情景:leader收到数据,所有follower都开始同步数据,但有一个follower,因为某种故障,迟迟不能与leader进行同步,那leader就要一直等下去,直到它完成同步,才能发送ack。这个问题怎么解决呢?

Leader维护了一个动态的in-sync replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给producer发送ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。Leader发生故障之后,就会从ISR中选举新的leader。

  1. ack应答机制

对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等ISR中的follower全部接收成功。

所以Kafka为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。

acks参数配置:
acks:
  • 0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据;
  • 1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据;

Kafka学习笔记(一),消息队列,kafka,学习,笔记

  • -1(all):producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复。

Kafka学习笔记(一),消息队列,kafka,学习,笔记
4. 故障处理细节

Log文件中的HW和LEO:

Kafka学习笔记(一),消息队列,kafka,学习,笔记

  • follower故障
    follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了。
  • leader故障
    leader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。

注意:这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

3.2.3 Exactly Once语义

将服务器的ACK级别设置为-1,可以保证Producer到Server之间不会丢失数据,即At Least Once语义。相对的,将服务器ACK级别设置为0,可以保证生产者每条消息只会被发送一次,即At Most Once语义。

At Least Once可以保证数据不丢失,但是不能保证数据不重复;相对的,At Least Once可以保证数据不重复,但是不能保证数据不丢失。但是,对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即Exactly Once语义。在0.11版本以前的Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需要单独做全局去重,这就对性能造成了很大影响。

0.11版本的Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指Producer不论向Server发送多少次重复数据,Server端都只会持久化一条。幂等性结合At Least Once语义,就构成了Kafka的Exactly Once语义。
即:At Least Once + 幂等性 = Exactly Once

要启用幂等性,只需要将Producer的参数中enable.idompotence设置为true即可。Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。开启幂等性的Producer在初始化的时候会被分配一个PID,发往同一Partition的消息会附带Sequence Number。而Broker端会对<PID, Partition, SeqNumber>做缓存,当具有相同主键的消息提交时,Broker只会持久化一条。

但是PID重启就会变化,同时不同的Partition也具有不同主键,所以幂等性无法保证跨分区跨会话的Exactly Once。文章来源地址https://www.toymoban.com/news/detail-759920.html

到了这里,关于Kafka学习笔记(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的分区策略

    01. Kafka 分区的作用 分区的作用就是提供负载均衡的能力,或者说对数据进行分区的主要原因,就是为了实现系统的高伸缩性。不同的分区能够被放置到不同节点的机器上,而数据的读写操作也都是针对分区这个粒度而进行的,这样每个节点的机器都能独立地执行各自分区的

    2024年02月13日
    浏览(54)
  • 消息队列 Kafka

    Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域 在高并发环境下,同步请求来不及处理会发生堵塞,从而触发too many connection错误,引发雪崩效应。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过

    2024年02月07日
    浏览(40)
  • 消息队列之王——Kafka

        在学习kafka之前,我们需要先学习 Zookeeper ,那Zookeeper是什么呢? Zookeeper 是一个开源的分布式的,为分布式框架提供协调服务的Apache项目。         Zookeeper从 设计模式 角度来理解:是一个基于观察者模式设计的 分布式服务管理框架 ,它 负责存储和管理 大家都关心

    2024年01月23日
    浏览(50)
  • 消息队列——kafka基础

    首先自然是要列出Kafka官网地址啦:https://kafka.apache.org/ 概述 定义 发布/订阅模式 ​ 原文链接:https://blog.csdn.net/tjvictor/article/details/5223309 ​ 定义了一种 一对多 的依赖关系,让 多个订阅者对象同时监听某一个主题对象 。这个主题对象在自身状态变化时,会通知所有订阅者对

    2024年02月04日
    浏览(43)
  • 分布式 - 消息队列Kafka:Kafka生产者发送消息的3种方式

    不管是把Kafka作为消息队列、消息总线还是数据存储平台,总是需要一个可以往Kafka写入数据的生产者、一个可以从Kafka读取数据的消费者,或者一个兼具两种角色的应用程序。 Kafka 生产者是指使用 Apache Kafka 消息系统的应用程序,它们负责将消息发送到 Kafka 集群中的一个或多

    2024年02月13日
    浏览(48)
  • Kafka源码解析之SocketServer,kafka消息队列面试题

    ======================================================================= Kafka处理请求不区分优先级,但这种绝对公平的策略有时会发生问题。 比如:创建一个单分区双副本的主题,当时集群中的Broker A机器保存了分区的Leader副本,Broker B保存了Follower副本。突然业务激增,Broker A瞬间积压大量

    2024年04月08日
    浏览(40)
  • Kafka消息队列实现消息的发送和接收

    消息在Kafka消息队列中发送和接收过程如下图所示: 消息生产者Producer产生消息数据,发送到Kafka消息队列中,一台Kafka节点只有一个Broker,消息会存储在Kafka的Topic(主题中),不同类型的消息数据会存储在不同的Topic中,可以利用Topic实现消息的分类,消息消费者Consumer会订阅

    2024年02月11日
    浏览(52)
  • 消息队列RocketMQ、Kafka小计

    点对点模式 (一对一,消费者主动拉取数据,消息收到后消息清除)点对点模型通常是一个基于拉取或者轮询的消息传送模型,这种模型从队列中请求信息,而不是将消息推送到客户端。这个模型的特点是发送到队列的消息被一个且只有一个接收者接收处理,即使有多个消息

    2023年04月22日
    浏览(36)
  • Zookeeper集群+消息队列Kafka

    ZooKeeper 是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。为分布式框架提供协调服务的Apache项目

    2024年04月16日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包