三门问题与贝叶斯公式

这篇具有很好参考价值的文章主要介绍了三门问题与贝叶斯公式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

三门问题

一个抽奖节目,舞台上有三扇门,其中一扇门的后面有汽车,其余两扇没有,选中有汽车的那扇门就可以赢得该汽车。首先参与者从三扇门中选择一扇,接着主持人会故意打开一扇没有车的门,并询问参与者是否要更改自己的选项。请问更改选项和不更改选项哪个的中奖概率更高?

这是一个很容易犯错的问题,许多人会忽略题目中隐藏的一个重要信息——主持人事先知道哪扇门后面有车、哪扇门后面没车。

定义 \(A, B\) 两个事件:

  • \(A\):参与者选择的是有车的门。
  • \(B\):主持人打开的是没有车的门。(主持人事先知道门后面有无车,故意打开无车的门)

不更改选项的中奖概率为 \(P(A|B)\),使用贝叶斯公式可知

\[P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B|A)}{P(B)}. \]

由于主持人事先知道门后面有无车,并且总是会故意选择一扇没有车的门打开,因此有

\[\begin{aligned} & P(B|A) = 1, P(B|\overline{A}) = 1, \\ & P(AB) = P(A)P(B|A) = P(A) = \frac{1}{3}, \\ & P(B) = P(A)P(B|A) + P(\overline{A})P(B|\overline{A}) = 1, \end{aligned} \]

不更改选项的中奖概率为 \(P(A|B) = \frac{\frac{1}{3}}{1} = \frac{1}{3}\),更改选项的中奖概率为 \(1 - P(A|B) = \frac{2}{3}\),可见更改选项的中奖概率更高。

变种的三门问题

接下来看一个变种的三门问题:如果主持人事先不知道门后的情况,是随机开门的,请问更改选项和不更改选项哪个的中奖概率更高?

这里我们将 \(B\) 事件的定义修改为:主持人打开的是没有车的门。(主持人不知道门后的情况,随机开门)

此时有

\[\begin{aligned} & P(A) = \frac{1}{3}, \\ & P(AB) = P(A)P(B|A) = \frac{1}{3}\cdot\frac{2}{2} = \frac{1}{3}, \\ & P(B) = P(A)P(B|A) + P(\overline{A})P(B|\overline{A}) = \frac{1}{3} + \frac{2}{3}\cdot\frac{1}{2} = \frac{2}{3}, \end{aligned} \]

不更改选项的中奖概率为 \(P(A|B) = \frac{P(AB)}{P(B)} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2}\),更改选项的中奖概率为 \(1 - P(A|B) = \frac{1}{2}\),二者的中奖概率相同。文章来源地址https://www.toymoban.com/news/detail-760798.html

到了这里,关于三门问题与贝叶斯公式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【朴素贝叶斯】深入浅出讲解朴素贝叶斯算法(公式、原理)

    本文收录于《深入浅出讲解自然语言处理》专栏,此专栏聚焦于自然语言处理领域的各大经典算法,将持续更新,欢迎大家订阅! ​个人主页:有梦想的程序星空 ​个人介绍:小编是人工智能领域硕士,全栈工程师,深耕Flask后端开发、数据挖掘、NLP、Android开发、自动化等

    2024年02月03日
    浏览(49)
  • 条件概率、贝叶斯公式理解

    1、 条件概率 条件概率是指事件A在事件B发生的条件下发生的概率, 记作:P(A|B)。如下图所示:整个样本空间为Ω,事件A和事件B包含在Ω中。事件A和事件B同时发生的情况,即A、B交集记作AB。事件A的概率记作:P(A)=A/Ω,事件B的概率记作P(B)=B/Ω。AB交集部分的概率记作:P(A

    2024年02月11日
    浏览(58)
  • 机器学习——先验概率、后验概率、全概率公式、贝叶斯公式

    1、定义 先验概率(prior probability)是指根据以往经验和分析得到的概率,如全概率公式,它往往作为\\\"由因求果\\\"问题中的\\\"因\\\"出现的概率。——百度百科 2、直观理解 这件事还没有发生,根据以往的经验和数据推断出这件事会发生的概率。 3、例子 以扔硬币为例,在扔之前就

    2023年04月08日
    浏览(51)
  • 15、条件概率、全概率公式、贝叶斯公式、马尔科夫链

    定义:设A、B是两个事件,且,P(A) 0 则称 为事件A发生的条件下事件B的条件概率 对这个式子进行变形,即可得到概率的乘法公式: P(A) 0 时,则 P(B) 0 时,则 乍一看,这个式子不就是把除法形式写成了乘法形式嘛,不然不然,这个区别是本质的,分母不为0很关键,而且看法也

    2024年02月13日
    浏览(47)
  • 通俗地理解贝叶斯公式(定理)

    朴素贝叶斯(Naive Bayesian algorithm)是有监督学习的一种分类算法,它基于“贝叶斯定理”实现,该原理的提出人是英国著名数学家托马斯·贝叶斯。贝叶斯定理是基于概率论和统计学的相关知识实现的,因此在正式学习“朴素贝叶斯算法”前,我们有必要先认识“贝叶斯定理

    2024年02月07日
    浏览(36)
  • 【概率论】贝叶斯公式的作业

    两台车床加工同样的零件,第一台出现不合格品的概率是 0.03,第二台出现不合格品的概率是 0.06,加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.如果取出的零件是不合格品,求它是由第二台车床加工的概率_____; (结果小数点后保留1位) 【正

    2024年02月11日
    浏览(41)
  • 贝叶斯分类器(公式推导+举例应用)

    引言 在机器学习的世界中,有一类强大而受欢迎的算法——贝叶斯分类器,它倚仗着贝叶斯定理和朴素的独立性假设,成为解决分类问题的得力工具。这种算法的独特之处在于其对概率的建模,使得它在面对不确定性和大规模特征空间时表现卓越。 本文将深入探讨贝叶斯分

    2024年01月21日
    浏览(52)
  • 概率论与数理统计学习笔记(7)——全概率公式与贝叶斯公式

    下图是本文的背景内容,小B休闲时间有80%的概率玩手机游戏,有20%的概率玩电脑游戏。这两个游戏都有抽卡环节,其中手游抽到金卡的概率为5%,端游抽到金卡的概率为15%。已知小B这天抽到了金卡,那么请问他是在手机上抽到的还是在电脑上抽到的? 上述问题中,我们先考

    2024年02月09日
    浏览(43)
  • 机器学习100天(三十五):035 贝叶斯公式

    《机器学习100天》完整目录:目录 机器学习100天,今天讲的是:贝叶斯公式! 好了,上一节介绍完先验概率、后验概率、联合概率、全概率后,我们来看这样一个问题:如果我现在挑到了一个瓜蒂脱落的瓜,则该瓜是好瓜的概率多大? 显然,这是一个计算后验概率的问题,

    2023年04月08日
    浏览(41)
  • [学习笔记] [机器学习] 9. 朴素贝叶斯(概率基础、联合概率、条件概率、贝叶斯公式、情感分析)

    视频链接 数据集下载地址:无需下载 学习目标: 4. 说明条件概率与联合概率 5. 说明贝叶斯公式、以及特征独立的关系 6. 记忆贝叶斯公式 7. 知道拉普拉斯平滑系数 8. 应用贝叶斯公式实现概率的计算 9. 会使用朴素贝叶斯对商品评论进行情感分析 朴素贝叶斯算法主要还是用来

    2024年02月09日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包