数据结构(超详细讲解!!)第二十一节 特殊矩阵的压缩存储

这篇具有很好参考价值的文章主要介绍了数据结构(超详细讲解!!)第二十一节 特殊矩阵的压缩存储。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.压缩存储的目标

值相同的元素只存储一次

压缩掉对零元的存储,只存储非零元

特殊形状矩阵:

是指非零元(如值相同的元素)或零元素分布具有一定规律性的矩阵。

如: 对称矩阵 上三角矩阵   下三角矩阵 对角矩阵   准对角矩阵

2.三角矩阵

三角矩阵大体分为三类:下三角矩阵、上三角矩阵和对称矩阵。

对于一个n阶矩阵A来说,若当i<j时,有aij=0,则称此矩阵为下三角矩阵;

若当i>j时,有aij=0,则称此矩阵为上三角矩阵;

若矩阵中的所有元素均满足aij=aji,则称此矩阵为对称矩阵。

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

 对于下三角矩阵的压缩存储,我们只存储下三角的非零元素,对于零元素则不存。我们按“行序为主序”进行存储,得到的序列是a11, a21, a22, a31, a32, a33, …, an1, an2, …, ann。由于下三角矩阵的元素个数为n(n+1)/2,即:

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

所以可压缩存储到一个大小为n(n+1)/2的一维数组C中

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

下三角矩阵中元素aij(i>j)在一维数组A中的位置为:        

Loc[i, j]=Loc[1, 1]+前i-1行非零元素个数+第i行中aij前非零元素个数        

前i-1行元素个数=1+2+3+4+…+(i-1)=i(i-1)/2,所以有 Loc[i, j]=Loc[1, 1]+i(i-1)/2+j-1        

同样,对于上三角矩阵,也可以将其压缩存储到一个大小为n(n+1)/2的一维数组C中。其中元素aij(i<j)在数组C中的存储位置为: Loc[i, j]=Loc[1, 1]+j(j-1)/2+i-1      

对于对称矩阵,因其元素满足aij=aji,我们可以为每一对相等的元素分配一个存储空间,即只存下三角(或上三角)矩阵,从而将n2个元素压缩到n(n+1)/2个空间中。

3.带状矩阵

 三对角带状矩阵有如下特点:            

i=1, j=1, 2                  

1<i<n, j=i-1, i, i+1;            

i=n, j=n-1, n;

时,aij非零,其它元素均为零。

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

(1)确定存储该矩阵所需的一维向量空间的大小        

在这里我们假设每个非零元素所占空间的大小为1个单元。 从图中观察得知,三对角带状矩阵中,除了第一行和最后一行只有2个非零元素外,其余各行均有3个非零元素。由此得到, 所需一维向量空间的大小为 2+2+3(n-2)=3n-2

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

(2)确定非零元素在一维数组空间中的位置        

Loc[i ,  j] = Loc[1, 1]+前i-1行非零元素个数+第i行中aij前非零元素个数;        

前i-1行元素个数=3×(i-1)-1(因为第1行只有2个非零元素);        

第i行中aij前非零元素个数=j-i+1,其中

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

由此得到:

Loc[i,  j]=Loc[1, 1]+3(i-1)-1+j-i+1 =Loc[1, 1]+2(i-1)+j-1

4.稀疏矩阵

是指非零元比零元少得多,且非零元在矩阵中的分布不具有一定规律性的矩阵。

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

假设 m 行 n 列的矩阵含 t 个非零元素,则称

 特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

为稀疏因子。 通常认为 小于等于0.05 的矩阵为稀疏矩阵。

(1)稀疏矩阵的三元组表表示法

对于矩阵中的每个非零元,可以用三个属性来惟一确定:它所在的行、所在的例以及它的值。因此,可以用一个三元组(行, 列, 值)来惟一确定矩阵中的一个非零元。

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

   稀疏矩阵的三元组表表示法虽然节约了存储空间, 但比起矩阵正常的存储方式来讲,其实现相同操作要耗费较多的时间, 同时也增加了算法的难度, 即以耗费更多时间为代价来换取空间的节省。

#define MAXSIZE 1000   /*非零元素的个数最多为1000*/ 
      typedef struct 
      {
         int    row,   col;    /*该非零元素的行下标和列下标*/
         ElementType  e;   /*该非零元素的值*/ 
      }Triple;  
      typedef struct 
 {
      Triple   data[MAXSIZE+1];     /* 非零元素的三元组表,data[0]未用*/
      int      m,   n,   len;           /*矩阵的行数、 列数和非零元素的个数*/ 
}TSMatrix; 

 1) 用三元组表实现稀疏矩阵的转置运算        

下面首先以稀疏矩阵的转置运算为例,介绍采用三元组表时的实现方法。        

所谓的矩阵转置,是指变换元素的位置,把位于(row,col)位置上的元素换到(col,row)位置上,也就是说, 把元素的行列互换。

采用矩阵的正常存储方式时, 实现矩阵转置的经典算法如下:

void  TransMatrix(ElementType source[n][m],  ElementType dest[m][n])
{/*source和dest分别为被转置的矩阵和转置以后的矩阵(用二维数组表示)*/ 
     int i,  j;  
     for(i=0; i<m; i++)
        for (j=0; j< n; j++) 
            dest[i][ j]=source[j] [i] ; 
  }

采用矩阵的三元组存储方式实现转置

① 矩阵source的三元组表A的行、 列互换就可以得到B中的元素

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

 ② 为了保证转置后的矩阵的三元组表B也是以“行序为主序”进行存放,则需要对行、列互换后的三元组表B按B的行下标(即A的列下标)大小重新排序

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

方法一:

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

 我们附设一个位置计数器j,用于指向当前转置后元素应放入三元组表B中的位置。 处理完一个元素后,j加1, j的初值为1。 具体转置算法如下:

Void  TransposeTSMatrix(TSMatrix A,  TSMatrix  *B)
{ /*把矩阵A转置到B所指向的矩阵中去, 矩阵用三元组表表示 */
      int  i ,  j,  k ;  
      B->m= A.n ;  B->n= A.m ;  B->len= A.len ; 
      if(B->len>0)
      { 
j=1;  
            for(k=1;  k<=A.n;  k++)   
              for(i=1;  i<=A.len;  i++)  
                  if(A.data[i].col==k)   
                  {   
                        B->data[j].row=A.data[i].col    
                        B->data[j].col=A.data[i].row;     
                        B->data[j].e=A.data[i].e;     
                        j++;    
                  }
      }
} 

  算法的时间耗费主要是在双重循环中,其时间复杂度为O(A.n×A.len), 最坏情况下,当A.len=A.m×A.n时,时间复杂度为O(A.m×A.n2)。采用正常方式实现矩阵转置的算法时间复杂度为O(A.m×A.n)。

方法二:

 为了能将待转置三元组表A中元素一次定位到三元组表B的正确位置上,需要预先计算以下数据:

  (1) 待转置矩阵source每一列中非零元素的个数(即转置后矩阵dest每一行中非零元素的个数)。

(2) 待转置矩阵source每一列中第一个非零元素在三元组表B中的正确位置(即转置后矩阵dest每一行中第一个非零元素在三元组B中的正确位置)。

 为此, 需要设两个数组num[ ]和position[ ],其中num[col]用来存放三元组表A中第col列中非零元素个数(三元组表B中第col行非零元素的个数),position[col]用来存放转置前三元组表A中第col列(转置后三元组表B中第col行)中第一个非零元素在三元组表B中的正确位置。

num[col]的计算方法: 将三元组表A扫描一遍,对于其中列号为k的元素,给相应的num[k]加1。

position[col]的计算方法: position[1]=1, position[col]=position[col-1]+num[col-1],  其中2≤col≤A.n。

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

  将三元组表A中所有的非零元素直接放到三元组表B中正确位置上的方法:        

position[col]的初值为三元组表A中第col列(三元组表B的第col行)中第一个非零元素的正确位置,当三元组表A中第col列有一个元素加入到三元组表B时,则position[col]=position[col]+1,即: 使position[col]始终指向三元组表A中第col列中下一个非零元素的正确位置。        

具体算法如下:

FastTransposeTSMatrix (TSMatrix  A,   TSMatrix * B)
{ /*基于矩阵的三元组表示, 采用快速转置法, 将矩阵A转置为B所指的矩阵*/
int col,  t,  p, q; 
int num[MAXSIZE],  position[MAXSIZE]; 
B->len=A.len;  B->n=A.m;  B->m=A.n; 
if(B->len)
   {
for(col=1; col<=A.n; col++) 
            num[col]=0;   
      for(t=1; t<=A.len; t++) 
            num[A.data[t].col]++;   /*计算每一列的非零元素的个数*/
      position[1]=1; 
      for(col=2; col<A.n; col++)   /*求col列中第一个非零元素在B.data[ ]中的正
确位置 */
      position[col]=position[col-1]+num[col-1];  
      for(p=1; p<A.len.p++) 
       {  
            col=A.data[p].col;   q=position[col];  
            B->data[q].row=A.data[p].col;   
            B->data[q].col=A.data[p].row;   
            B->data[q].e=A.data[p].e
            position[col]++;  
       } 
}
} 

 快速转置算法的时间主要耗费在四个并列的单循环上,这四个并列的单循环分别执行了A.n,A.len,A.n-1,A.len次,因而总的时间复杂度为O(A.n)+O(A.len)+O(A.n)+O(A.len),即为O(A.n+A.len)。 当待转置矩阵M中非零元素个数接近于A.m×A.n 时,其时间复杂度接近于经典算法的时间复杂度O(A.m×A.n)。          

快速转置算法在空间耗费上除了三元组表所占用的空间外,还需要两个辅助向量空间,即num[1..A.n],position[1..A.n]。可见,算法在时间上的节省,是以更多的存储空间为代价的。

(2)稀疏矩阵的链式存储结构: 十字链表

与用二维数组存储稀疏矩阵比较,用三元组表表示的稀疏矩阵节约了空间,但是在进行矩阵加法、减法和乘法等运算时,有时矩阵中的非零元素的位置和个数会发生很大的变化。如A=A+B, 将矩阵B加到矩阵A上,此时若还用三元组表表示法,势必会为了保持三元组表“以行序为主序”而大量移动元素。

在十字链表中,矩阵的每一个非零元素用一个结点表示, 该结点除了(row,col,value)以外,还要有以下两个链域:       

 right:  用于链接同一行中的下一个非零元素;        

down: 用于链接同一列中的下一个非零元素。

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

用两个一维的指针数组分别存放各行链表的头指针和各列链表的头指针,从而得到了矩阵的十字链表存储结构。

特殊矩阵压缩存储原理,数据结构(超详细讲解!!),矩阵,算法,数据结构,c语言

结构类型:

建十字链表的算法的时间复杂度为O(t×s),s=max(m,n)。文章来源地址https://www.toymoban.com/news/detail-761650.html

typedef struct OLNode
 {
      int                row,   col;           /* 非零元素的行和列下标 */ 
      ElementType     value;  
      struct OLNode   * right, *down;   /* 非零元素所在行表、列表的后继链域 */
 }OLNode;  *OLink; 
      typedef struct 
 { 
      OLink  * row-head,   *col-head;    /* 行、 列链表的头指针向量 */ 
      int     m,   n,   len;                   /* 稀疏矩阵的行数、 列数、 非
零元素的个数 */
 }CrossList; 


CreateCrossList (CrossList * M)
 {/* 采用十字链表存储结构, 创建稀疏矩阵M */
 if(M!=NULL) free(M); 
 scanf(&m, &n, &t);    /* 输入M的行数, 列数和非零元素的个数 */
 M->m=m; M->n=n; M->len=t; 
 If(!(M->row-head=(OLink * )malloc((m+1)sizeof(OLink)))) exit(OVERFLOW); 
 If(!(M->col-head=(OLink * )malloc((n+1)sizeof(OLink)))) exit(OVERFLOW); 
 M->row-head[ ]=M->col-head[ ]=NULL;
    /* 初始化行、 列头指针向量, 各行、 列链表为空的链表 */
 for(scanf(&i, &j, &e); i!=0;  scanf(&i, &j, &e)) 
     { 
     if(!(p=(OLNode *) malloc(sizeof(OLNode)))) exit(OVERFLOW);  
     p->row=i; p->col=j; p->value=e;    /* 生成结点 */ 
     if(M->row-head[i]==NULL)   M->row-head[i]=p; 
else
      {  /* 寻找行表中的插入位置 */
      for(q=M->row-head[i];   q->right&&q->right->col<j;   q=q->right)
        p->right=q->right;  q->right=p;    /* 完成插入 */ 
      } 
     if(M->col-head[j]==NULL)   M->col-head[j]=p;  
    else
      {  /*寻找列表中的插入位置*/
      for(q=M->col-head[j];   q->down&&q->down->row<i;   q=q->down) 
           p->down=q->down;  q->down=p;     /* 完成插入 */         
       }
    }
 } 

到了这里,关于数据结构(超详细讲解!!)第二十一节 特殊矩阵的压缩存储的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】单链表 | 详细讲解

    无须为了表示中间的元素之间的逻辑关系而增加额外的存储空间; 因为以数组形式存储,可以快速地存取表中任一位置的元素。 插入和删除操作需要移动大量元素,时间复杂度为O(N); 当线性表长度变化较大时,难以确定存储空间的容量; 造成存储空间的“碎片”。 其实顺

    2024年02月05日
    浏览(45)
  • 【数据结构】顺序表 | 详细讲解

    在计算机中主要有两种基本的存储结构用于存放线性表:顺序存储结构和链式存储结构。本篇文章介绍采用顺序存储的结构实现线性表的存储。 线性表的顺序存储结构,指的是一段地址连续的存储单元依次存储链性表的数据元素。 线性表的(,……)的顺序存储示意图如下

    2024年02月04日
    浏览(38)
  • UCB Data100:数据科学的原理和技巧:第二十一章到第二十六章

    原文:SQL II 译者:飞龙 协议:CC BY-NC-SA 4.0 学习成果 介绍过滤组的能力 在 SQL 中执行数据清理和文本操作 跨表连接数据 在本讲座中,我们将继续上次的工作,介绍一些高级的 SQL 语法。 首先,让我们加载上一堂课的数据库。 HAVING 通过在每个组的所有行上应用一些条件来过

    2024年01月21日
    浏览(162)
  • 【数据结构】快排的详细讲解

    江河入海,知识涌动,这是我参与江海计划的第7篇。 目录:         快排是排序算法中效率是比较高的,快排的基本思想是运用二分思想,与二叉树的前序遍历类似,将数据划分,每次划分确定1个基准值(就是已经确定好有序后位置的数据),以升序为例,基准值左面的数据

    2024年02月06日
    浏览(91)
  • 数据结构:栈和队列(详细讲解)

    🎇🎇🎇作者: @小鱼不会骑车 🎆🎆🎆专栏: 《数据结构》 🎓🎓🎓个人简介: 一名专科大一在读的小比特,努力学习编程是我唯一的出路😎😎😎 栈 :一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为 栈顶 ,另

    2024年02月03日
    浏览(45)
  • 《数据结构》八大排序(详细图文分析讲解)

    目录 排序 排序的应用       排序简介 排序的分类 排序算法的好坏评判 冒泡排序法  思路分析 代码实现   选择排序法 思路分析 代码实现   插入排序 思路分析 代码实现  希尔排序 思路分析 代码演示  归并排序法  思路分析 代码演示  快速排序  思路分析 代码实现 

    2024年02月03日
    浏览(46)
  • 数据结构(超详细讲解!!)第十八节 串(堆串)

    假设以一维数组heap MAXSIZE 表示可供字符串进行动态分配的存储空间,并设 int start 指向heap 中未分配区域的开始地址(初始化时start =0) 。在程序执行过程中,当生成一个新串时,就从start指示的位置起,为新串分配一个所需大小的存储空间,同时建立该串的描述。这种存储

    2024年02月05日
    浏览(56)
  • [数据结构 -- 手撕排序第二篇] 一篇带你详细了解希尔排序

    目录 1、常见排序算法 1.1 插入排序基本思想 2、希尔排序 2.1 希尔排序( 缩小增量排序 ) 2.1.1 预排序阶段 2.1.2 插入排序阶段 2.2 单趟希尔排序 2.2.1 思路分析 2.2.2 代码实现 3、希尔排序代码实现 4、希尔排序时间复杂度 5、希尔排序与插入排序效率对比 6、希尔排序特性总结 直接

    2024年02月13日
    浏览(56)
  • C++数据封装以及定义结构的详细讲解鸭~

    名字:阿玥的小东东   博客主页:阿玥的小东东的博客_CSDN博客-pythonc++高级知识,过年必备,C/C++知识讲解领域博主 目录 定义结构 访问结构成员 结构作为函数参数

    2024年02月04日
    浏览(42)
  • 数据结构进阶篇 之【选择排序】详细讲解(选择排序,堆排序)

    民以食为天,我以乐为先 嘴上来的嘘寒问暖,不如直接打笔巨款 1.1 基本思想 1.2 实现原理 1.3 代码实现 1.4 直接选择排序的特性总结 跳转链接:数据结构 之 堆的应用 –❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀-正文开始-❀–❀–❀–❀–❀–❀–❀

    2024年04月09日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包