一、源数据
二、SPSS因子分析
2.1.导入数据
2.2.标准化处理
由于指标的量纲不同(单位不一致),因此,需要对数据进行标准化处理
2.3.因子分析
点击“确定”后,再回到“总方差解释”表格,以“旋转载荷平方和”中的各成分因子贡献率为权重,对因子得分做加权平均处理,可计算出综合得分
即:综合得分=(0.72283 * FAC1_1+0.19629 * FAC2_1) / 0.91912
其中,FAC1_1是成分1因子得分,FAC2_1是成分2因子得分,0.72283是成分1方差百分比(成分1因子贡献率),0.19629是成分2方差百分比(成分2因子贡献率),0.91912是累积方差百分比(累计因子贡献率)
2.4.输出结果
皮尔逊相关性矩阵:
通过计算指标之间的线性相关性,了解指标之间的相关性强弱,有助于确定因子个数和处理可能存在的共线性问题,如果相关性矩阵中大部分相关系数小于0.3且未通过充分性检验,则不适用于因子分析
充分性检验(KMO和Bartlett检验):
KMO检验:KMO值介于0和1之间,如果全部变量间相关系数平方和远大于偏相关系数平方和则KMO值接近1,KMO值越接近1越适合作因子分析。一般情况下,当KMO值大于0.6(严格一点就以0.7为阈值进行判断)时,表示指标之间的相关性较强,偏相关性较弱,适合做因子分析
Bartlett检验:原假设相关系数矩阵为单位阵,若得到的概率值小于规定的显著性水平(一般取0.05,严格一点就以0.01为阈值进行判断)则拒绝原假设,认为数据适合做因子分析,通俗来讲,即显著性水平越趋近于0则越适合做因子分析,反之则不能拒绝原假设,即数据不适合做因子分析
公因子方差:
从公因子方差可以看出各原始指标变量间的共同度,即各原始指标变量能被提取出的程度,由图可知,所有指标变量的共同度都在0.6以上,大部分指标变量的共同度在0.95以上,说明因子能解释指标变量中的大部分信息,适合进行因子分析
总方差解释:
在总方差解释表中,可以看出提取2个成分因子时,其累计贡献率即可达到91.912%,说明选取2个成分因子就足以代替原来6个指标变量,能够解释原来6个指标变量所涵盖的大部分信息
碎石图:
在碎石图中,可以看出第一个因子的特征值最高,方差贡献最大,第二个因子其次,第三个因子之后的特征值都较低了,对原来6个指标变量的解释程度也就较低,可以忽略,因此,提取2个成分因子是比较合适的
成分矩阵:
由成分矩阵可知,成分因子1主要解释人均GDP、财政总收入、全体常住居民人均可支配收入、金融机构人民币贷款余额、全社会能耗等5个指标变量的信息,可定义为综合发展因子F1,成分因子2主要解释供应土地这一个指标变量的信息,可定义为资源因子F2
旋转后的成分矩阵:
在旋转之前,原始因子的载荷矩阵通常会产生一些问题,即一些变量与多个因子之间的载荷值都很高,而其他变量则没有明显的载荷值,在这种情况下,因子以及它们的载荷解释可能会变得模糊不清,难以解释或者解释力度不够,旋转后的成分矩阵则是能够更清晰地解释变量与因子之间的关系,从而提高了因子模型的可解释性
成分转换矩阵:
用来说明旋转前后成分因子间的系数对应关系
旋转后的空间中的组件图:
由图可知,人均GDP、财政总收入、全体常住居民人均可支配收入、金融机构人民币贷款余额、全社会能耗等5个指标变量基本是在同一个维度上的(横轴),这与综合发展因子F1是对应的,而供应土地这一个指标变量则是在另一个维度(纵轴),这则是与资源因子F2是对应的,说明提取2个因子是合理的,具有一定的可解释性
成分得分系数矩阵:
综合发展因子F1得分:
资源因子F2得分:
成分得分协方差矩阵:
因子得分:
FAC1_1是成分1因子得分,即综合发展因子F1得分,FAC2_1是成分2因子得分,即资源因子F2得分,具体计算公式在“成分得分系数矩阵”已作说明
综合得分:
综合得分=(0.72283 * 综合发展因子F1得分+0.19629 * 资源因子F2得分) / 0.91912
三、Python因子分析
3.1.导入第三方库
# 导入第三方库
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from factor_analyzer import FactorAnalyzer,calculate_kmo,calculate_bartlett_sphericity
import matplotlib.pyplot as plt
import seaborn as sns
# 忽略警告
import warnings
warnings.filterwarnings("ignore")
# 绘图时正常显示中文
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
3.2.读取数据
# 读取数据
data=pd.read_excel('数据.xlsx',sheet_name='Sheet1',header=1)
print(data)
3.3.标准化处理
# 数据标准化处理
data_std=pd.DataFrame(StandardScaler().fit_transform(data.iloc[:,1:]),columns=data.columns[1:])
print(data_std)
3.4.皮尔逊相关性检验
# 皮尔逊相关性矩阵
data_corr=data_std.corr(method='pearson')
print(data_corr)
# 皮尔逊相关性热力图
plt.figure(figsize=(8,6))
sns.heatmap(data_corr,cmap='PuBu',annot=True,annot_kws={'fontsize':8})
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
plt.tight_layout()
3.5.充分性检验(KMO检验和Bartlett检验)
# KMO检验和Bartlett检验
kmo=calculate_kmo(data_std) # KMO>0.6,则通过KMO检验
bartlett=calculate_bartlett_sphericity(data_std) # Bartlett<0.05,则通过Bartlett检验
print('\nKMO检验:',kmo[1],'\nBartlett检验:',bartlett[1],'\n')
3.6.旋转前载荷矩阵
# 旋转前载荷矩阵
matrix=FactorAnalyzer(rotation=None,n_factors=8,method='principal')
matrix.fit(data_std)
f_contribution_var =matrix.get_factor_variance()
matrices_var = pd.DataFrame()
matrices_var["旋转前特征根"] = f_contribution_var[0]
matrices_var["旋转前方差贡献率"] = f_contribution_var[1]
matrices_var["旋转前方差累计贡献率"] = f_contribution_var[2]
print('旋转前载荷矩阵的贡献率:\n',matrices_var,'\n')
3.7.旋转后载荷矩阵
# 旋转后载荷矩阵
matrix_rotated=FactorAnalyzer(rotation='varimax',n_factors=2,method='principal')
matrix_rotated.fit(data_std)
f_contribution_var_rotated = matrix_rotated.get_factor_variance()
matrices_var_rotated = pd.DataFrame()
matrices_var_rotated["旋转后特征根"] = f_contribution_var_rotated[0]
matrices_var_rotated["旋转后方差贡献率"] = f_contribution_var_rotated[1]
matrices_var_rotated["旋转后方差累计贡献率"] = f_contribution_var_rotated[2]
print('旋转后载荷矩阵的贡献率:\n',matrices_var_rotated,'\n')
3.8.公因子方差表
# 公因子方差表
communalities=pd.DataFrame(matrix_rotated.get_communalities(),index=data_std.columns)
print('公因子方差表:\n',communalities)
3.9.绘制碎石图
# 绘制碎石图
ev,v=matrix_rotated.get_eigenvalues()
plt.figure(figsize=(6,6))
plt.scatter(range(1,data_std.shape[1]+1),ev)
plt.plot(range(1,data_std.shape[1]+1),ev)
plt.title('碎石图')
plt.xlabel('因子个数')
plt.ylabel('特征根')
3.10.绘制成分矩阵热力图
# 绘制成分矩阵热力图
component_matrix=pd.DataFrame(np.abs(matrix_rotated.loadings_),index=data_std.columns,columns=['成分因子1','成分因子2'])
plt.figure(figsize=(6,6))
sns.heatmap(component_matrix,annot=True,cmap='Blues')
plt.tight_layout()
3.11.绘制成分矩阵二维空间组件图
# 绘制成分矩阵二维空间组件图
plt.figure(figsize=(6,6))
x=component_matrix.iloc[:,0]
y=component_matrix.iloc[:,1]
plt.scatter(x,y)
for i in range(len(component_matrix)):
plt.annotate(component_matrix.index[i],(x[i],y[i]),textcoords='offset points',xytext=(-10,-10),ha='center',fontsize=8)
plt.xlabel(component_matrix.columns[0])
plt.ylabel(component_matrix.columns[1])
plt.title('二维空间组件图')
plt.grid(True)
3.12.计算因子得分
# 计算因子得分
factor_score=pd.DataFrame(matrix_rotated.transform(data_std),columns=['成分1','成分2'])
print(factor_score)
3.13.计算综合得分
# 计算综合得分
weight=matrices_var_rotated["旋转后方差贡献率"]/np.sum(matrices_var_rotated["旋转后方差贡献率"])
factor_score["综合得分"]=np.dot(factor_score,weight)
factor_score=pd.concat([data.iloc[:,0],factor_score],axis=1)
print('原顺序:\n',factor_score)
# 按综合得分从高到低排序
factor_score=factor_score.sort_values(by='综合得分',ascending=False)
factor_score=factor_score.reset_index(drop=True)
factor_score.index=factor_score.index+1
print('按综合得分从高到低排序:\n:',factor_score)
文章来源:https://www.toymoban.com/news/detail-762056.html
3.14.保存综合得分到excel
# 保存综合得分到新的excel
factor_score.to_excel('综合得分.xlsx',index_label='排名')
文章来源地址https://www.toymoban.com/news/detail-762056.html
到了这里,关于因子分析(SPSS和Python)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!