Hive SQL血缘解析

这篇具有很好参考价值的文章主要介绍了Hive SQL血缘解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  1. Druid可以直接获得所有的列
    http://t.csdn.cn/mO4TX
  2. 利用Hive提供的LineageLogger与Execution Hooks机制做血缘
    https://blog.csdn.net/qq_44831907/article/details/123033137
  3. Apache Calcite
  4. gudusoft 解析方案 商业
    https://blog.csdn.net/qq_31557939/article/details/126277212
    6.github开源项目:
    https://github.com/Shkin1/hathor
    https://github.com/sqlparser/sqlflow_public

===========================
一、数仓经常会碰到的几类问题:
1、两个数据报表进行对比,结果差异很大,需要人工核对分析指标的维度信息,比如从头分析数据指标从哪里来,处理条件是什么,最后才能分析出问题原因。
2、基础数据表因某种原因需要修改字段,需要评估其对数仓的影响,费时费力,然后在做方案。

二、问题分析:
数据源长途跋涉,经过大量的处理和组件来传递,呈现在业务用户面前,对数据进行回溯其实很难。元数据回溯在有效决策、策略制定、差异分析等过程中很重要。这两类问题都属于数据血缘分析问题,第一类叫做数据回溯、第二类叫做影响分析,是数据回溯的逆向。

三、解决方法:
自己实现了一套基于hive数仓的数据血缘分析工具,来完成各个数据表、字段之间的关系梳理,进而解决上面两个问题。

工具主要目标:解析计算脚本中的HQL语句,分析得到输入输出表、输入输出字段和相应的处理条件,进行分析展现。
实现思路:对AST深度优先遍历,遇到操作的token则判断当前的操作,遇到子句则压栈当前处理,处理子句。子句处理完,栈弹出。处理字句的过程中,遇到子查询就保存当前子查询的信息,判断与其父查询的关系,最终形成树形结构; 遇到字段或者条件处理则记录当前的字段和条件信息、组成Block,嵌套调用。
关键点解析:
1、遇到TOK_TAB或TOK_TABREF则判断出当前操作的表
2、压栈判断是否是join,判断join条件
3、定义数据结构Block,遇到在where\select\join时获得其下相应的字段和条件,组成Block
4、定义数据结构ColLine,遇到TOK_SUBQUERY保存当前的子查询信息,供父查询使用
5、定义数据结构ColLine,遇到TOK_UNION结束时,合并并截断当前的列信息
6、遇到select 或者未明确指出的字段,查询元数据进行辅助分析
7、解析结果进行相关校验
————————————————
版权声明:本文为CSDN博主「thomas0yang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/thomas0yang/article/details/49449723

==================================
HiveSqlBloodFigure
如果你喜欢这个项目,那就点击一下右上方的【Star】以及【Fork】,支持一下我,让我有动力持续更新!
项目介绍
在数据仓库建设中,经常会使用到数据血缘追中方面的功能,本项目实现了对hql集合进行静态分析,获取hql对应的血缘图(表血缘 + 字段血缘)

项目升级内容
删除hive-exec与hadoop-common的maven依赖,使得项目更加的轻量级。
重构项目代码,优化解析,修复无字段血缘时,不能获取表血缘的BUG。
规范化接口输入输出,血缘图均为自定义实体,方便进行JSON序列化。
新增接口层,方便Spring的注入,同时也提供静态方式调用。
下个版本升级内容
引入JDBC获取元数据信息,使血缘图更加丰富,同时可以解决Sql中有select * 的问题。

测试用例
请关注test下的HiveBloodEngineTest与HiveSqlBloodFactoryTest。

接口地址
接口类:HiveBloodEngine,实现类:HiveBloodEngineImpl。(spring接入)
工具类:HiveSqlBloodFactory。(静态调用)
使用说明
运行:
免费sql血缘分析,数据治理,hive,hadoop,数据仓库
结果:
表血缘:
免费sql血缘分析,数据治理,hive,hadoop,数据仓库
字段血缘:
免费sql血缘分析,数据治理,hive,hadoop,数据仓库

1 研究背景
随着企业信息化和业务的发展,数据资产日益庞大,数据仓库构建越来越复杂,在数仓构建的过程中,常遇到数据溯源困难,数据模型修改导致业务分析困难等难题,此类问题主要是由于数据血缘分析不足造成的,只有强化血缘关系,才能帮助企业更好的发挥数据价值。

SQL血缘关系是数据仓库模型构建的核心依赖。通过对SQL语句进行梳理与解析,得到各个业务层表之间依赖关系和属性依赖关系,并进行可视化展示,形成数据表和属性血缘层次关系图,充分展示了原始字段数据与数据模型的映射关系。拥有良好的SQL血缘关系系统,不仅有利于数据分析师对业务场景的梳理,还极大帮助对其数仓分层的构建,同时对企业数据质量控制方面起到很好的朔源作用,对构造数据链路图,监控数据变化起到很好的辅助作用。

市场存在一系列血缘关系解析工具,如Druids,但由于只支持对mysql语句的解析,且解析力度不够,不支持复杂的sql逻辑等问题,导致无法在企业中得到广泛使用。同样的hive自身的血缘解析往往在sql执行之后,才可得到解析结果,如果sql执行比较耗时,导致血缘关系无法快速展现,同时造成没有办法提前进行元数据安全和权限认证等问题,在企业真实应用中有一定的限制。

本文结合公司自身业务,研究Hive血缘关系解析源码,并进行优化,首先简化SQL语句剪枝和对包含CTE别名数据表的识别与剔除,降低SQL解析的复杂性,提高血缘解析性能;其次,提供元数据信息服务模块,既保证元信息的完整性,又提供安全的数据表权限认证,维护数据表的操作权限,保证操作的安全性;然后,将postExecuteHook前置,即在SQL执行物理优化前即可获得SQL 的血缘关系,极大提高了获取SQL血缘关系的效率,后续将对这些优化策略进行逐一展开。
————————————————
版权声明:本文为CSDN博主「搜狐技术产品小编2023」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/SOHU_TECH/article/details/110605919

2 相关技术介绍
2.1 SQL血缘关系介绍

在数据仓库构建的过程中,SQL血缘关系体现了各个数据表以及相关属性的依赖关系。SQL血缘关系即是对业务流程涉及到的模型表进行梳理,它包含了集群血缘关系、系统血缘关系、表级血缘关系和字段血缘关系,其指向数据的上游来源,向上游追根溯源。通过简单的SQL语句展现各个表之间的数据关系。
————————————————
版权声明:本文为CSDN博主「搜狐技术产品小编2023」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/SOHU_TECH/article/details/110605919

Apache Atlas
Apache Calcite(可以用)
Trino
ANTLR(可以用)
Antlr4(可以用)
Hive ASTNode(可以用)
Druid
hive hook(需要执行SQL)

https://github.com/webgjc/sql-parser/blob/master/src/main/java/cn/ganjiacheng/hive/HiveSqlFieldLineageParser.java

http://ganjiacheng.cn/article/2020/article_14_%E5%9F%BA%E4%BA%8Eantlr4%E5%AE%9E%E7%8E%B0HQL%E7%9A%84%E8%A7%A3%E6%9E%90-%E8%A1%A8%E8%A1%80%E7%BC%98%E5%92%8C%E5%AD%97%E6%AE%B5%E8%A1%80%E7%BC%98/

https://blog.csdn.net/thomas0yang/article/details/49449723

https://download.csdn.net/download/thomas0yang/9354943

https://download.csdn.net/download/thomas0yang/9369949

http://tech.meituan.com/hive-sql-to-mapreduce.html
http://www.cnblogs.com/drawwindows/p/4595771.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual
————————————————
版权声明:本文为CSDN博主「thomas0yang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/thomas0yang/article/details/49449723

https://download.csdn.net/download/xl_1803/75865628?utm_medium=distribute.pc_relevant_download.none-task-download-2defaultBlogCommendFromBaiduRate-1-75865628-download-9369949.257%5Ev11%5Epc_dl_relevant_income_base1&depth_1-utm_source=distribute.pc_relevant_download.none-task-download-2defaultBlogCommendFromBaiduRate-1-75865628-download-9369949.257%5Ev11%5Epc_dl_relevant_income_base1&spm=1003.2020.3001.6616.1

https://download.csdn.net/download/weixin_42131618/16734276?utm_medium=distribute.pc_relevant_download.none-task-download-2defaultBlogCommendFromBaiduRate-12-16734276-download-9369949.257%5Ev11%5Epc_dl_relevant_income_base1&depth_1-utm_source=distribute.pc_relevant_download.none-task-download-2defaultBlogCommendFromBaiduRate-12-16734276-download-9369949.257%5Ev11%5Epc_dl_relevant_income_base1&spm=1003.2020.3001.6616.13

https://github.com/JunNan-X/HiveSqlBloodFigure

https://github.com/lihuigang/dp_dw_lineage

https://blog.csdn.net/qq_44831907/article/details/123033137

https://github.com/webgjc/sql-parser

http://ganjiacheng.cn/article/2020/article_6_%E5%9F%BA%E4%BA%8Eantlr4%E5%AE%9E%E7%8E%B0HQL%E7%9A%84%E8%A7%A3%E6%9E%90-%E5%85%83%E6%95%B0%E6%8D%AE/

http://ganjiacheng.cn/article/2020/article_14_%E5%9F%BA%E4%BA%8Eantlr4%E5%AE%9E%E7%8E%B0HQL%E7%9A%84%E8%A7%A3%E6%9E%90-%E8%A1%A8%E8%A1%80%E7%BC%98%E5%92%8C%E5%AD%97%E6%AE%B5%E8%A1%80%E7%BC%98/

http://ganjiacheng.cn/article/2020/article_12_%E5%9F%BA%E4%BA%8Eantlr4%E5%AE%9E%E7%8E%B0HQL%E7%9A%84%E8%A7%A3%E6%9E%90-%E6%A0%BC%E5%BC%8F%E5%8C%96/

https://gitee.com/Kingkazuma111/sql-parser-lineage?_from=gitee_search

https://gitee.com/hassan1314/flink-sql-lineage?_from=gitee_search

https://blog.csdn.net/SOHU_TECH/article/details/110605919

https://github.com/reata/sqllineage

https://reata.github.io/blog/sqllineage-a-sql-lineage-analysis-tool/

跨分区扫描

package com.atguigu.dga.governance.assess.assessor.calc;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.dga.governance.assess.Assessor;
import com.atguigu.dga.governance.bean.AssessParam;
import com.atguigu.dga.governance.bean.GovernanceAssessDetail;
import com.atguigu.dga.util.SqlParser;
import com.atguigu.dga.meta.bean.TableMetaInfo;
import com.google.common.collect.Sets;
import lombok.*;
import org.apache.hadoop.hive.ql.lib.Dispatcher;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.parse.ASTNode;
import org.apache.hadoop.hive.ql.parse.BaseSemanticAnalyzer;
import org.apache.hadoop.hive.ql.parse.HiveParser;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.springframework.stereotype.Component;

import java.math.BigDecimal;
import java.util.*;

@Component("MULTI_PARTITION")
public class MultiPartitionAssessor extends Assessor {
    @Override
    protected void checkProblem(GovernanceAssessDetail governanceAssessDetail, AssessParam assessParam) throws Exception {

        if (assessParam.getTableMetaInfo().getTableMetaInfoExtra().getDwLevel().equals("ODS") || assessParam.getTDsTaskDefinition() == null) {  //ods层没有sql处理
            return;
        }

        //跨分区扫描
        //提取sql 进行
        if (assessParam.getTableMetaInfo().getTableName().equals("ads_order_to_pay_interval_avg")) {
            System.out.println(111);
        }


        String sql = assessParam.getTDsTaskDefinition().getSql();
        governanceAssessDetail.setAssessComment(sql);
        Map<String, TableMetaInfo> tableMetaInfoMap = assessParam.getTableMetaInfoMap();

        CheckMultiPartitionScanDispatcher dispatcher = new CheckMultiPartitionScanDispatcher();
        dispatcher.setTableMetaInfoMap(tableMetaInfoMap);
        dispatcher.setDefaultSchemaName(assessParam.getTableMetaInfo().getSchemaName());
        SqlParser.parse(dispatcher, sql);

        Map<String, Set<String>> tableFilterFieldMap = new HashMap<>();
        Map<String, Set<String>> tableRangeFilterFieldMap = new HashMap<>();


        //把条件列表 整理为 表-被过滤字段 的结构
        List<CheckMultiPartitionScanDispatcher.WhereCondition> whereConditionList = dispatcher.getWhereConditionList();
        for (CheckMultiPartitionScanDispatcher.WhereCondition whereCondition : whereConditionList) {

            List<CheckMultiPartitionScanDispatcher.OriginTableField> tableFieldList = whereCondition.getTableFieldList();
            for (CheckMultiPartitionScanDispatcher.OriginTableField originTableField : tableFieldList) {
                Set<String> tableFilterFieldSet = tableFilterFieldMap.get(originTableField.getOriginTable());
                if (tableFilterFieldSet == null) {
                    tableFilterFieldSet = new HashSet<>();
                    tableFilterFieldMap.put(originTableField.getOriginTable(), tableFilterFieldSet);
                }
                tableFilterFieldSet.add(originTableField.getField());

                if (!whereCondition.operator.equals("=")) {
                    Set<String> tableFilterFilterFieldSet = tableRangeFilterFieldMap.get(originTableField.getOriginTable());
                    if (tableFilterFilterFieldSet == null) {
                        tableFilterFilterFieldSet = new HashSet<>();
                        tableRangeFilterFieldMap.put(originTableField.getOriginTable(), tableFilterFieldSet);
                    }
                    tableFilterFilterFieldSet.add(originTableField.getField());

                }
            }
        }

        StringBuilder assessProblem = new StringBuilder();
        // 获得所有引用表的清单
        Map<String, List<CheckMultiPartitionScanDispatcher.CurTableField>> refTableFieldMap = dispatcher.getRefTableFieldMap();
        for (String refTableName : refTableFieldMap.keySet()) {
            //获得元数据的分区字段
            TableMetaInfo tableMetaInfo = tableMetaInfoMap.get(refTableName);
            Set<String> tableFilterFieldSet = tableFilterFieldMap.get(refTableName);
            Set<String> tableFilterRangeFieldSet = tableRangeFilterFieldMap.get(refTableName);

            //检查每个分区字段 1 是否被过滤  2 是否被范围查询
            String partitionColNameJson = tableMetaInfo.getPartitionColNameJson();
            List<JSONObject> partitionJsonObjList = JSON.parseArray(partitionColNameJson, JSONObject.class);
            for (JSONObject partitionJsonObj : partitionJsonObjList) {
                String partitionName = partitionJsonObj.getString("name");
                if (tableFilterFieldSet == null || !tableFilterFieldSet.contains(partitionName)) {
                    assessProblem.append("引用表:" + refTableName + "中的分区字段" + partitionName + "未参与过滤 ;");
                }
                if (tableFilterRangeFieldSet != null && tableFilterRangeFieldSet.contains(partitionName)) {
                    assessProblem.append("引用表:" + refTableName + "中的分区字段" + partitionName + "涉及多分区扫描 ;");
                }
            }

        }

        if (assessProblem.length() > 0) {
            governanceAssessDetail.setAssessScore(BigDecimal.ZERO);
            governanceAssessDetail.setAssessProblem(assessProblem.toString());
            governanceAssessDetail.setAssessComment(JSON.toJSONString(dispatcher.refTableFieldMap.keySet()) + "||" + sql);

        }


    }


    //节点处理器 会经过sql所有节点处理环节,每经过一个节点执行dispatch方法
    public class CheckMultiPartitionScanDispatcher implements Dispatcher {

        //检查策略
        // 1  获得比较条件的语句
        // 2  查看比较字段是否为分区字段
        // 3  如果比较符号为 >=  <= < >  <> in 则是为多分区
        // 4  如果比较符号为 =  则获得比较的值 如果同一个分区字段 有多个值 则视为多分区


        @Setter
        Map<String, TableMetaInfo> tableMetaInfoMap = new HashMap<>();


        @Getter
        Map<String, List<CurTableField>> subqueryTableFiedlMap = new HashMap<>();   //表<表名,<字段名,Set<原始字段>>

        @Getter
        Map<String, List<CurTableField>> insertTableFieldMap = new HashMap<>();   //表<表名,<字段名,Set<原始字段>>

        @Getter
        Map<String, List<CurTableField>> refTableFieldMap = new HashMap<>();

        @Getter
        List<WhereCondition> whereConditionList = new ArrayList<>();
        @Setter
        String defaultSchemaName = null;

        Set<String> operators = Sets.newHashSet("=", ">", "<", ">=", "<=", "<>", "like"); // in / not in 属于函数计算

        @Override
        public Object dispatch(Node nd, Stack<Node> stack, Object... nodeOutputs) throws SemanticException {

            //检查该节点的处理内容
            ASTNode queryNode = (ASTNode) nd;
            //分析查询
            if (queryNode.getType() == HiveParser.TOK_QUERY) {

                //System.out.println("astNode = " + queryNode.getText());
                Map<String, List<CurTableField>> curQueryTableFieldMap = new HashMap<>();
                Map<String, String> aliasMap = new HashMap<>();


                for (Node childNode : queryNode.getChildren()) {

                    ASTNode childAstNode = (ASTNode) childNode;
                    if (childAstNode.getType() == HiveParser.TOK_FROM) {
                        loadTablesFromNodeRec(childAstNode, curQueryTableFieldMap, aliasMap);
                    } else if (childAstNode.getType() == HiveParser.TOK_INSERT) {
                        for (Node insertChildNode : childAstNode.getChildren()) {
                            ASTNode insertChildAstNode = (ASTNode) insertChildNode;
                            if (insertChildAstNode.getType() == HiveParser.TOK_WHERE) {
                                loadConditionFromNodeRec(insertChildAstNode, whereConditionList, curQueryTableFieldMap, aliasMap);
                            } else if (insertChildAstNode.getType() == HiveParser.TOK_SELECT || insertChildAstNode.getType() == HiveParser.TOK_SELECTDI) {
                                // 如果有子查询 //把查询字段写入缓存 // 没有子查询作为最终输出字段
                                List<CurTableField> tableFieldOutputList = getTableFieldOutput(insertChildAstNode, curQueryTableFieldMap, aliasMap);
                                //向上追溯子查询的别名
                                ASTNode subqueryNode = (ASTNode) queryNode.getAncestor(HiveParser.TOK_SUBQUERY);
                                //保存到子查询
                                if (subqueryNode != null) {
                                    cacheSubqueryTableFieldMap(subqueryNode, tableFieldOutputList);
                                }
                                ASTNode insertTableNode = (ASTNode) childAstNode.getFirstChildWithType(HiveParser.TOK_DESTINATION).getChild(0);
                                if (insertTableNode.getType() == HiveParser.TOK_TAB) {  //需要做sql最终输出
                                    cacheInsertTableField(insertTableNode, tableFieldOutputList);
                                }

                            }
                        }

                    }
                }
            }


            return null;
        }

        private void loadTableFiledByTableName(String tableName, Map<String, List<CurTableField>> curTableFieldMap, Map<String, String> aliasMap) {
            String tableWithSchema = tableName;
            if (tableName.indexOf(".") < 0) {
                tableWithSchema = defaultSchemaName + "." + tableName;
            }
            TableMetaInfo tableMetaInfo = tableMetaInfoMap.get(tableWithSchema);
            if (tableMetaInfo != null) {  //是 真实表
                List<CurTableField> curFieldsList = new ArrayList<>();
                //加载普通字段
                String colNameJson = tableMetaInfo.getColNameJson();
                List<JSONObject> colJsonObjectList = JSON.parseArray(colNameJson, JSONObject.class);

                for (JSONObject colJsonObject : colJsonObjectList) {
                    CurTableField curTableField = new CurTableField();

                    OriginTableField originTableField = new OriginTableField();
                    originTableField.setField(colJsonObject.getString("name"));
                    originTableField.setPartition(false);
                    originTableField.setOriginTable(tableMetaInfo.getSchemaName() + "." + tableMetaInfo.getTableName());
                    if (colJsonObject.getString("type").indexOf("struct") > 0) {
                        Set<String> structFieldSet = getStructFieldSet(colJsonObject.getString("type"));
                        originTableField.setSubFieldSet(structFieldSet);
                    }

                    curTableField.getOriginTableFieldList().add(originTableField);
                    curTableField.setCurFieldName(colJsonObject.getString("name"));
                    curFieldsList.add(curTableField);
                }
                //加载分区字段
                String partitionColNameJson = tableMetaInfo.getPartitionColNameJson();
                List<JSONObject> partitionJsonObjectList = JSON.parseArray(partitionColNameJson, JSONObject.class);
                for (JSONObject partitionColJsonObject : partitionJsonObjectList) {
                    CurTableField curTableField = new CurTableField();

                    OriginTableField originTableField = new OriginTableField();
                    originTableField.setField(partitionColJsonObject.getString("name"));
                    originTableField.setPartition(true);
                    originTableField.setOriginTable(tableMetaInfo.getSchemaName() + "." + tableMetaInfo.getTableName());

                    curTableField.getOriginTableFieldList().add(originTableField);
                    curTableField.setCurFieldName(partitionColJsonObject.getString("name"));
                    curFieldsList.add(curTableField);
                }

                curTableFieldMap.put(tableName, curFieldsList);
                refTableFieldMap.put(tableName, curFieldsList);
                String tableWithoutSchema = tableWithSchema.substring(tableWithSchema.indexOf(".") + 1);
                aliasMap.put(tableWithoutSchema, tableWithSchema);  //把不带库名的表名 作为别名的一种
            } else {  //不是真实表 从缓存中提取
                List<CurTableField> subqueryFieldsList = subqueryTableFiedlMap.get(tableName);
                if (subqueryFieldsList == null) {
                    throw new RuntimeException("未识别对应表: " + tableName);
                }
                curTableFieldMap.put(tableName, subqueryFieldsList);

            }


        }

        // 递归查找某个节点下的引用的表,并进行加载
        public void loadTablesFromNodeRec(ASTNode astNode, Map<String, List<CurTableField>> tableFieldMap, Map<String, String> aliasMap) {
            if (astNode.getType() == HiveParser.TOK_TABREF) {
                ASTNode tabTree = (ASTNode) astNode.getChild(0);
                String tableName = null;
                if (tabTree.getChildCount() == 1) {
                    tableName = BaseSemanticAnalyzer.getUnescapedName((ASTNode) tabTree.getChild(0));
                } else {
                    tableName = BaseSemanticAnalyzer.getUnescapedName((ASTNode) tabTree.getChild(0)) + "." + tabTree.getChild(1);  //自动拼接表名
                }
                //根据表名和补充元数据
                loadTableFiledByTableName(tableName, tableFieldMap, aliasMap);

                //涉及别名
                if (astNode.getChildren().size() == 2) {
                    ASTNode aliasNode = (ASTNode) astNode.getChild(1);
                    aliasMap.put(aliasNode.getText(), tableName);
                }

            } else if (astNode.getType() == HiveParser.TOK_SUBQUERY) {
                String aliasName = astNode.getFirstChildWithType(HiveParser.Identifier).getText();
                loadTableFiledByTableName(aliasName, tableFieldMap, aliasMap);
            } else if (astNode.getChildren() != null && astNode.getChildren().size() > 0) {
                for (Node childNode : astNode.getChildren()) {
                    ASTNode childAstNode = (ASTNode) childNode;
                    loadTablesFromNodeRec(childAstNode, tableFieldMap, aliasMap);
                }
            }
        }


        //递归检查并收集条件表达式
        public void loadConditionFromNodeRec(ASTNode node, List<WhereCondition> whereConditionList, Map<String, List<CurTableField>> queryTableFieldMap, Map<String, String> aliasMap) {

            if (operators.contains(node.getText())
                    || (node.getType() == HiveParser.TOK_FUNCTION && node.getChild(0).getText().equals("in"))) {
                WhereCondition whereCondition = new WhereCondition();
                if (node.getType() == HiveParser.TOK_FUNCTION && node.getChild(0).getText().equals("in")) {
                    if (node.getParent().getText().equals("not")) {
                        whereCondition.setOperator("nin");
                    } else {
                        whereCondition.setOperator("in");
                    }
                } else {
                    whereCondition.setOperator(node.getText());
                }

                ArrayList<Node> children = node.getChildren();
                for (Node child : children) {
                    ASTNode operatorChildNode = (ASTNode) child;
                    if (operatorChildNode.getType() == HiveParser.DOT) {   //带表名的字段名
                        ASTNode prefixNode = (ASTNode) operatorChildNode.getChild(0).getChild(0);
                        ASTNode fieldNode = (ASTNode) operatorChildNode.getChild(1);
                        getWhereField(whereCondition, prefixNode.getText(), fieldNode.getText(), queryTableFieldMap, aliasMap);
                        whereConditionList.add(whereCondition);
                    } else if (operatorChildNode.getType() == HiveParser.TOK_TABLE_OR_COL) {  //不带表名的字段名
                        ASTNode fieldNode = (ASTNode) operatorChildNode.getChild(0);
                        getWhereField(whereCondition, null, fieldNode.getText(), queryTableFieldMap, aliasMap);
                        whereConditionList.add(whereCondition);
                    }
                }
            } else {
                if (node.getChildren() != null) {
                    for (Node nd : node.getChildren()) {
                        ASTNode nodeChild = (ASTNode) nd;
                        loadConditionFromNodeRec(nodeChild, whereConditionList, queryTableFieldMap, aliasMap);
                    }
                }
            }
        }

        private String getInputTableName(Stack<Node> stack) {
            ASTNode globalQueryNode = (ASTNode) stack.firstElement();
            ASTNode insertNode = (ASTNode) globalQueryNode.getFirstChildWithType(HiveParser.TOK_INSERT);
            ASTNode tableNode = (ASTNode) insertNode.getChild(0).getChild(0);  //TOK_DESINATION->TOK_TAB
            if (tableNode.getChildCount() == 1) {
                return defaultSchemaName + "." + BaseSemanticAnalyzer.getUnescapedName((ASTNode) tableNode.getChild(0));      //不带库名 补库名
            } else {
                return BaseSemanticAnalyzer.getUnescapedName((ASTNode) tableNode.getChild(0)) + "." + tableNode.getChild(1);  //带库名
            }
        }


        public List<CurTableField> getTableFieldOutput(ASTNode selectNode, Map<String, List<CurTableField>> curQueryTableFieldMap, Map<String, String> aliasMap) {

            List<CurTableField> outputTableFieldList = new ArrayList<>();
            for (Node selectXPRNode : selectNode.getChildren()) {
                ASTNode selectXPRAstNode = (ASTNode) selectXPRNode;
                // 如果是隐性 或者select * //返回子查询
                if (selectXPRAstNode.getChild(0).getType() == HiveParser.TOK_SETCOLREF || selectXPRAstNode.getChild(0).getType() == HiveParser.TOK_ALLCOLREF) {
                    for (List<CurTableField> curTableFieldList : curQueryTableFieldMap.values()) {
                        outputTableFieldList.addAll(curTableFieldList);
                    }
                    return outputTableFieldList;
                } else {
                    //逐个取节点下的select 的字段
                    CurTableField curTableField = new CurTableField();
                    loadCurTableFieldFromNodeRec((ASTNode) selectXPRAstNode, curTableField, curQueryTableFieldMap, aliasMap);
                    if (selectXPRNode.getChildren().size() == 2) { //说明为字段起了别名
                        ASTNode aliasNode = (ASTNode) ((ASTNode) selectXPRNode).getChild(1);
                        curTableField.setCurFieldName(aliasNode.getText());
                    }
                    outputTableFieldList.add(curTableField);

                }
            }
            return outputTableFieldList;

        }

        //把对象保存到子查询缓存中
        private void cacheSubqueryTableFieldMap(ASTNode subqueryNode, List<CurTableField> curTableFieldList) {
            ASTNode subqueryAliasNode = (ASTNode) subqueryNode.getFirstChildWithType(HiveParser.Identifier);
            String aliasName = subqueryAliasNode.getText();
            List<CurTableField> existsTableFieldList = subqueryTableFiedlMap.get(aliasName);

            if (existsTableFieldList != null) { //说明已经有查询声明为改别名了 ,主要原因是因为union造成的, 这种情况要按照顺序把每个字段的原始字段信息追加
                for (int i = 0; i < existsTableFieldList.size(); i++) {
                    CurTableField existsTableField = existsTableFieldList.get(i);
                    CurTableField curTableField = curTableFieldList.get(i);
                    existsTableField.getOriginTableFieldList().addAll(curTableField.getOriginTableFieldList());
                }

            } else {          //把子查询加入缓存
                subqueryTableFiedlMap.put(aliasName, curTableFieldList);
            }
        }


        private void cacheInsertTableField(ASTNode outputTableNode, List<CurTableField> curTableFieldList) {
            String outputTableName = null;
            if (outputTableNode.getChildCount() == 2) {
                outputTableName = outputTableNode.getChild(0).getChild(0).getText() + "." + outputTableNode.getChild(1).getText();
            } else {
                outputTableName = defaultSchemaName + "." + outputTableNode.getChild(0).getChild(0).getText();
            }

            insertTableFieldMap.put(outputTableName, curTableFieldList);
        }


        // 利用递归获得当前节点下的字段信息
        public void loadCurTableFieldFromNodeRec(ASTNode recNode, CurTableField curTableField, Map<String, List<CurTableField>> curQueryTableFieldMap, Map<String, String> aliasMap) {
            if (recNode.getChildren() != null) {
                for (Node subNode : recNode.getChildren()) {
                    ASTNode subAstNode = (ASTNode) subNode;
                    if (subAstNode.getType() == HiveParser.DOT) {  //带表的字段
                        ASTNode prefixNode = (ASTNode) subAstNode.getChild(0).getChild(0);
                        ASTNode fieldNode = (ASTNode) subAstNode.getChild(1);
                        String prefix = prefixNode.getText();
                        List<OriginTableField> originTableFieldList = getOriginFieldByFieldName(prefix, fieldNode.getText(), curQueryTableFieldMap, aliasMap);


                        curTableField.getOriginTableFieldList().addAll(originTableFieldList);
                        curTableField.setCurFieldName(fieldNode.getText());


                    } else if (subAstNode.getType() == HiveParser.TOK_TABLE_OR_COL) {
                        ASTNode fieldNode = (ASTNode) subAstNode.getChild(0);
                        //不带表的字段要从
                        List<OriginTableField> originTableFieldList = getOriginTableFieldList(curQueryTableFieldMap, fieldNode.getText());
                        curTableField.getOriginTableFieldList().addAll(originTableFieldList);
                        curTableField.setCurFieldName(fieldNode.getText());


                    } else {
                        loadCurTableFieldFromNodeRec(subAstNode, curTableField, curQueryTableFieldMap, aliasMap);

                    }

                }
            }


        }

        //前缀
        public void getWhereField(WhereCondition whereCondition, String prefix, String fieldName, Map<String, List<CurTableField>> queryTableFieldMap, Map<String, String> aliasMap) {

            List<OriginTableField> originTableFieldList = null;
            if (prefix == null) {
                originTableFieldList = getOriginTableFieldList(queryTableFieldMap, fieldName);
            } else {   //有前缀
                originTableFieldList = getOriginFieldByFieldName(prefix, fieldName, queryTableFieldMap, aliasMap);   //把前缀作为表查询

            }


            if (originTableFieldList == null) {
                throw new RuntimeException("无法识别的字段名:" + fieldName);
            }
            whereCondition.setTableFieldList(originTableFieldList);
        }


//        private List<OriginTableField> getOriginTableFieldList(List<CurTableField> curTableField, String fieldName) {
//
//        }


//        private List<CurTableField> getCurTableFieldListByPrefix(String prefix, Map<String, List<CurTableField>> queryTableFieldMap, Map<String, String> aliasMap) {
//            List<CurTableField> curFieldList = queryTableFieldMap.get(prefix);   //把前缀作为表查询
//            if (curFieldList == null) {//未查询出 尝试换为字段查询
//                String tableName = aliasMap.get(prefix);
//                if (tableName != null) {
//                    curFieldList = queryTableFieldMap.get(tableName);
//                }
//            }
//
//            return curFieldList;
//        }


        //根据前缀和字段名 获得从表结构中获得 原始字段列表
        private List<OriginTableField> getOriginFieldByFieldName(String prefix, String fieldName, Map<String, List<CurTableField>> queryTableFieldMap, Map<String, String> aliasMap) {

            List<CurTableField> curFieldList = queryTableFieldMap.get(prefix);   //把前缀作为表查询
            if (curFieldList == null) {//未查询出 尝试换为字段查询
                String tableName = aliasMap.get(prefix);
                if (tableName != null) {
                    curFieldList = queryTableFieldMap.get(tableName);
                }
            }
            if (curFieldList == null) {
                return getOriginTableFieldList(queryTableFieldMap, prefix); //前缀有可能是结构体字段名
            }
            if (curFieldList == null) {
                throw new RuntimeException("不明确的表前缀:" + prefix);
            }
            return getOriginTableFieldList(fieldName, curFieldList);

        }


        private List<OriginTableField> getOriginTableFieldList(String fieldName, List<CurTableField> curFieldList) {
            for (CurTableField tableField : curFieldList) {
                if (tableField.getCurFieldName().equals(fieldName)) {
                    return tableField.getOriginTableFieldList();
                }
            }
            return new ArrayList<>();  // 一般是常量字段 比 lateral产生的常量字段 不是从表中计算而来
        }

        private List<OriginTableField> getOriginTableFieldList(Map<String, List<CurTableField>> queryTableFieldMap, String fieldName) {

            List<OriginTableField> originTableFieldList = null;

            for (Map.Entry entry : queryTableFieldMap.entrySet()) {

                List<CurTableField> curTableFieldList = (List<CurTableField>) entry.getValue();
                List<OriginTableField> matchedOriginTableFieldList = getOriginTableFieldList(fieldName, curTableFieldList);
                if (originTableFieldList != null && originTableFieldList.size() > 0 && matchedOriginTableFieldList.size() > 0) {
                    throw new RuntimeException("归属不明确的字段:" + fieldName);
                } else {
                    originTableFieldList = matchedOriginTableFieldList;
                }
            }
            return originTableFieldList;
        }


        //拆分子字段
        //struct<ar:string,ba:string,ch:string,is_new:string,md:string,mid:string,os:string,sid:string,uid:string,vc:string>
        private Set<String> getStructFieldSet(String structType) {
            Set<String> subFieldNameSet = new HashSet();
            structType = structType.replace("struct<", "").replace(">", "");
            String[] fieldArr = structType.split(",");
            for (String fieldString : fieldArr) {
                String[] field = fieldString.split(":");
                String fieldName = field[0];
                subFieldNameSet.add(fieldName);
            }
            return subFieldNameSet;
        }


        @Data
        @AllArgsConstructor
        @NoArgsConstructor
        class CurTableField {
            String curFieldName;
            List<OriginTableField> originTableFieldList = new ArrayList<>();
        }

        @Data
        class OriginTableField {
            String field;
            String originTable;
            Set<String> subFieldSet;
            boolean isPartition;


        }

        @Data
        @AllArgsConstructor
        @NoArgsConstructor
        class WhereCondition {
            List<OriginTableField> tableFieldList = new ArrayList<>();
            String operator = null;
        }
    }
}

Hive 解析语法树

package com.atguigu.dga.util;

import org.apache.hadoop.hive.ql.lib.DefaultGraphWalker;
import org.apache.hadoop.hive.ql.lib.Dispatcher;
import org.apache.hadoop.hive.ql.lib.GraphWalker;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.parse.*;

import java.util.Collections;
import java.util.Stack;

public class SqlParser {


    //1  把sql转换为语法树   有工具 完成  在hive依赖中就已经提供了
    //
    //2  提供了一个 遍历器   后序遍历
    //
    //3  自定义一个节点处理器
    //4  把处理器放到遍历器中
    //5  让遍历器遍历语法树


    public  static void  parse(Dispatcher dispatcher,String sql ) throws  Exception {
        //1  把sql转换为语法树   有工具 完成  在hive依赖中就已经提供了
        ParseDriver parseDriver = new ParseDriver(); //用于把sql转为语法树
        ASTNode astNode = parseDriver.parse(sql);
        //2  提供了一个 遍历器   后序遍历
        while(astNode.getType()!= HiveParser.TOK_QUERY){   //循环遍历直到找到第一个query节点 ,循环退出 ,用query节点作为根节点。

            astNode=(ASTNode)astNode.getChild(0);
        }


        //3  自定义一个节点处理器  //根据不同的需求在方法外部定义 ,定义好后传递
        //4  把处理器放到遍历器中
        GraphWalker graphWalker=new DefaultGraphWalker(dispatcher);
        //5  让遍历器遍历语法树

        graphWalker.startWalking(Collections.singletonList(astNode),null);


    }


    public static void main(String[] args) throws Exception {
        String sql = " select a,b,c from gmall.user_info  u where u.id='123' and dt='123123' ";
        //   自定义一个节点处理器
        TestDispatcher testDispatcher = new TestDispatcher();


        SqlParser.parse( testDispatcher,sql);

    }


   static class TestDispatcher implements Dispatcher {




        //每到达一个节点要处理的事项
        @Override
        public Object dispatch(Node nd, Stack<Node> stack, Object... nodeOutputs) throws SemanticException {
            ASTNode astNode = (ASTNode) nd;
            System.out.println("type"+astNode.getType() +" || token:"+astNode.getToken().getText());
            return null;
        }
    }
}

druid 解析SQL语法树

import com.alibaba.druid.DbType;
import com.alibaba.druid.sql.ast.*;
import com.alibaba.druid.sql.ast.expr.SQLAggregateExpr;
import com.alibaba.druid.sql.ast.expr.SQLMethodInvokeExpr;
import com.alibaba.druid.sql.ast.statement.SQLSelectItem;
import com.alibaba.druid.sql.ast.statement.SQLSelectStatement;
import com.alibaba.druid.sql.dialect.hive.ast.HiveInsertStatement;
import com.alibaba.druid.sql.dialect.hive.parser.HiveStatementParser;
import com.alibaba.druid.sql.parser.SQLParserUtils;
import com.alibaba.druid.sql.parser.SQLStatementParser;

import java.util.List;
import java.util.Map;
import java.util.Set;

import com.alibaba.druid.sql.SQLUtils;
import com.alibaba.druid.sql.ast.SQLExpr;
import com.alibaba.druid.sql.ast.SQLName;
import com.alibaba.druid.sql.ast.SQLStatement;
import com.alibaba.druid.sql.ast.expr.SQLBinaryOpExpr;
import com.alibaba.druid.sql.parser.SQLStatementParser;
import com.alibaba.druid.sql.parser.ParserException;
import com.alibaba.druid.sql.parser.SQLParserFeature;
import com.alibaba.druid.sql.repository.SchemaRepository;
import com.alibaba.druid.sql.visitor.SchemaStatVisitor;
import com.alibaba.druid.stat.TableStat;
import com.alibaba.fastjson.JSON;

import com.alibaba.druid.sql.ast.SQLExpr;
import com.alibaba.druid.sql.ast.SQLStatement;
import com.alibaba.druid.sql.ast.statement.SQLSelect;
import com.alibaba.druid.sql.ast.statement.SQLSelectItem;

import com.alibaba.druid.sql.SQLUtils;
import com.alibaba.druid.sql.ast.SQLStatement;
import com.alibaba.druid.sql.dialect.mysql.visitor.MySqlSchemaStatVisitor;
import com.alibaba.druid.sql.dialect.hive.visitor.*;

/**
 * Created by 黄凯 on 2023/6/7 0007 14:11
 *
 * @author 黄凯
 * 永远相信美好的事情总会发生.
 */
public class DruidDemo {

    /*public static void main(String[] args) {

        String sql = " select a,b,c from gmall.user_info  u where u.id='123' and dt='123123' ";
//        String sql = "with t1 as (select aa(a), b, c, dt as dd\n" +
//                "            from tt1,\n" +
//                "                 tt2\n" +
//                "            where tt1.a = tt2.b\n" +
//                "              and dt = '2023-05-11')\n" +
//                "insert\n" +
//                "overwrite\n" +
//                "table\n" +
//                "tt9\n" +
//                "select a, b, c\n" +
//                "from t1\n" +
//                "where dt = date_add('2023-06-08', -4)\n" +
//                "union\n" +
//                "select a, b, c\n" +
//                "from t2\n" +
//                "where dt = date_add('2023-06-08', -7)";

        // 提取表名
//        SQLSelectItem sqlSelectItem = SQLUtils.toSelectItem(sql, DbType.mysql);
//        System.out.println("sqlSelectItem = " + sqlSelectItem);
//
//        SQLExpr expr = sqlSelectItem.getExpr();
//
//        System.out.println(expr.toString());
//        String string1 = JSON.toJSONString(expr);
//
//
//
//        System.out.println(expr.getAttributesDirect());
//
//        SQLCommentHint hint = expr.getHint();
//        Map<String, Object> attributes1 = expr.getAttributes();
//        List<SQLObject> children1 = expr.getChildren();
//        Map<String, Object> attributesDirect = expr.getAttributesDirect();
//        Object subQuery = expr.getAttribute("subQuery");
//        List<String> afterCommentsDirect = expr.getAfterCommentsDirect();
//        SQLObject parent = expr.getParent();
//
//
//        Map<String, Object> attributes2 = children1.get(0).getAttributes();


        // 创建Parser对象
        SQLStatementParser parser = SQLParserUtils.createSQLStatementParser(sql, DbType.hive);

        SQLStatement statement = parser.parseStatement();

        List<SQLObject> children2 = statement.getChildren();
        Object select = statement.getAttribute("select");
        Object query = statement.getAttribute("query");
        Object from = statement.getAttribute("from");
        List<SQLCommentHint> headHintsDirect = statement.getHeadHintsDirect();
        Map<String, Object> attributesDirect1 = statement.getAttributesDirect();
        Map<String, Object> attributes3 = statement.getAttributes();
        List<String> afterCommentsDirect1 = statement.getAfterCommentsDirect();
        List<String> beforeCommentsDirect = statement.getBeforeCommentsDirect();


        String string = JSON.toJSONString(children2);

        for (SQLObject child : children2) {
            if (child instanceof SQLSelectItem) {
                SQLSelectItem selectItem = (SQLSelectItem) child;
                SQLExpr expr2 = selectItem.getExpr();

                SQLObject parent = expr2.getParent();
                System.out.println("parent = " + parent);

                // 处理selectList中的表达式
                System.out.println(expr2.toString());
            }
        }


        List<SQLObject> children = statement.getChildren();

        for (SQLObject child : children) {

            System.out.println("child = " + child);

            Map<String, Object> attributes = child.getAttributes();
            System.out.println("attributes = " + attributes);

        }

        SQLLimit limit = SQLUtils.getLimit(statement, DbType.mysql);
        System.out.println("limit = " + limit);


        //强转
        SQLSelectStatement statement1 = (SQLSelectStatement) statement;

//        HiveInsertStatement statement1 = (HiveInsertStatement) statement;


        //对的
        SQLSelect select1 = statement1.getSelect();
//        SQLSelect select1 = null;

        SQLSelect sqlSelect = select1;
        List<SQLSelectItem> selectItems = sqlSelect.getQueryBlock().getSelectList();

        for (SQLSelectItem selectItem : selectItems) {
            SQLExpr expr3 = selectItem.getExpr();
            // 处理selectList中的表达式
            System.out.println(expr3.toString());
        }

        SQLExpr where = sqlSelect.getQueryBlock().getWhere();
        System.out.println("where = " + where);
        //对的


        /
        // 假设sql是要分析的SQL查询语句
//        String sql = "SELECT column1, column2 FROM table1";

        // 解析SQL语句
        List<SQLStatement> statements = SQLUtils.parseStatements(sql, DbType.hive);

        // 创建血缘分析器
        HiveSchemaStatVisitor visitor = new HiveSchemaStatVisitor();

        for (SQLStatement statement3 : statements) {
            statement3.accept(visitor);
        }

        System.out.println(visitor);

        SchemaStatVisitor schemaStatVisitor = new SchemaStatVisitor();


        HiveStatementParser parser3 = new HiveStatementParser(sql);
        // 使用Parser解析生成AST,这里SQLStatement就是AST
        SQLStatement sqlStatement = parser3.parseStatement();
        HiveSchemaStatVisitor visitor3 = new HiveSchemaStatVisitor();
        sqlStatement.accept(visitor3);
        Map<TableStat.Name, TableStat> tables = visitor3.getTables();
        System.out.println(tables.keySet());

        System.out.println("使用visitor数据表:" + visitor3.getTables());
        System.out.println("使用visitor字段:" + visitor3.getColumns());
        System.out.println("使用visitor条件:" + visitor3.getConditions());
        System.out.println("使用visitor分组:" + visitor3.getGroupByColumns());
        System.out.println("使用visitor排序:" + visitor3.getOrderByColumns());


        // 获取血缘关系结果
//        Map<String, Set<String>> tableLineage = visitor.getColumnsLineage();

        // 获取血缘关系结果
//        Map<String, Set<String>> tableLineage = visitor.getco

        // 创建血缘分析器
//        MySqlSchemaStatVisitor visitor = new MySqlSchemaStatVisitor();
//        // 获取血缘关系结果
//        Map<String, Set<String>> tableLineage = visitor.getColumnsLineage();

        // 假设statement是SQLStatement对象
//        if (select1 instanceof SQLSelect) {
//            SQLSelect sqlSelect = (SQLSelect) statement;
//            List<SQLSelectItem> selectItems = sqlSelect.getQueryBlock().getSelectList();
//            for (SQLSelectItem selectItem : selectItems) {
//                SQLExpr expr3 = selectItem.getExpr();
//                // 处理selectList中的表达式
//                System.out.println(expr3.toString());
//            }
//        }


//        // 获取表名
//        String tableName = statement.getTableSource().toString();
//
//        // 获取列名
//        List<SQLSelectItem> selectItems = statement.getSelect().getQueryBlock().getSelectList();
//        for (SQLSelectItem item : selectItems) {
//            String columnName = item.getExpr().toString();
//            // 处理列名
//        }
//
//        // 获取条件
//        SQLExpr where = statement.getSelect().getQueryBlock().getWhere();
//        if (where != null) {
//            // 处理条件
//        }


    }*/

    /**
     * 测试Druid
     *
     * @param args
     */
    public static void main(String[] args) {

        String sql = "with t1 as (select aa(a), b, c, dt as dd\n" +
                "            from tt1,\n" +
                "                 tt2\n" +
                "            where tt1.a = tt2.b\n" +
                "              and dt = '2023-05-11')\n" +
                "insert\n" +
                "overwrite\n" +
                "table\n" +
                "tt9\n" +
                "select a, b, c\n" +
                "from t1\n" +
                "where dt = date_add('2023-06-08', -4)\n" +
                "union\n" +
                "select a, b, c\n" +
                "from t2\n" +
                "where dt = date_add('2023-06-08', -7)";

        // 解析SQL语句
        List<SQLStatement> statements = SQLUtils.parseStatements(sql, DbType.hive);

        String string = SQLUtils.toSQLString(statements, DbType.hive);

        System.out.println("string = " + string);

        // 创建血缘分析器
        HiveSchemaStatVisitor visitor = new HiveSchemaStatVisitor();

        for (SQLStatement statement3 : statements) {
            statement3.accept(visitor);
        }

        System.out.println(visitor);

        SchemaStatVisitor schemaStatVisitor = new SchemaStatVisitor();


        HiveStatementParser parser3 = new HiveStatementParser(sql);
        // 使用Parser解析生成AST,这里SQLStatement就是AST
        SQLStatement sqlStatement = parser3.parseStatement();
        HiveSchemaStatVisitor visitor3 = new HiveSchemaStatVisitor();
        sqlStatement.accept(visitor3);
        Map<TableStat.Name, TableStat> tables = visitor3.getTables();
        System.out.println(tables.keySet());

        System.out.println("使用visitor数据表:" + visitor3.getTables());
        System.out.println("使用visitor字段:" + visitor3.getColumns());
        System.out.println("使用visitor条件:" + visitor3.getConditions());
        System.out.println("使用visitor分组:" + visitor3.getGroupByColumns());
        System.out.println("使用visitor排序:" + visitor3.getOrderByColumns());

        List<SQLAggregateExpr> aggregateFunctions = visitor3.getAggregateFunctions();
        List<SQLMethodInvokeExpr> functions = visitor3.getFunctions();
        List<SQLName> originalTables = visitor3.getOriginalTables();
        List<Object> parameters = visitor3.getParameters();
        Set<TableStat.Relationship> relationships = visitor3.getRelationships();
        SchemaRepository repository = visitor3.getRepository();


    }

}

表级沿袭

免费sql血缘分析,数据治理,hive,hadoop,数据仓库

列级沿袭

免费sql血缘分析,数据治理,hive,hadoop,数据仓库
免费sql血缘分析,数据治理,hive,hadoop,数据仓库文章来源地址https://www.toymoban.com/news/detail-762280.html

到了这里,关于Hive SQL血缘解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【大数据】Hive SQL语言(学习笔记)

    1)数据库结构 默认的数据库叫做default,存储于HDFS的:/user/hive/warehouse 用户自己创建的数据库存储位置:/user/hive/warehouse/database_name.db 2)创建数据库 comment:数据库的注释说明语句 location:指定数据库在HDFS存储位置,默认/user/hive/warehouse/dbname.db with dbproperties:用于指定一些数

    2024年02月07日
    浏览(45)
  • 3.Hive SQL数据定义语言(DDL)

    1.1 常见的开发方式 (1) Hive CLI、Beeline CLI Hive自带的命令行客户端 优点:不需要额外安装 缺点:编写SQL环境恶劣,无有效提示,无语法高亮,误操作率高 (2) 文本编辑器 Sublime、Emacs、EditPlus等 有些不支持作为客户端连接Hive服务,但支持SQL语法环境,那就在编辑器中开发

    2024年02月12日
    浏览(48)
  • 大数据技术之Hive SQL题库-中级

    1)表结构 user_id(用户id) gender(性别) birthday(生日) 101 男 1990-01-01 102 女 1991-02-01 103 女 1992-03-01 104 男 1993-04-01 2)建表语句 hive 3)数据装载 hive 1)表结构 sku_id (商品id) name (商品名称) category_id (分类id) from_date (上架日期) price (商品价格) 1 xiaomi 10 1 2020-01-01 2000 6 洗碗机 2 2020-02-01

    2024年02月11日
    浏览(48)
  • Spark SQL数据源:Hive表

    Spark SQL还支持读取和写入存储在Apache Hive中的数据。然而,由于Hive有大量依赖项,这些依赖项不包括在默认的Spark发行版中,如果在classpath上配置了这些Hive依赖项,Spark就会自动加载它们。需要注意的是,这些Hive依赖项必须出现在所有Worker节点上,因为它们需要访问Hive序列化

    2024年02月11日
    浏览(36)
  • sqllineage解析sql列级血缘并提交到datahub

    目录 版本信息 操作记录 安装datahub v0.10.0 datahub 快速部署 元数据摄取 通过sqlline获取指定sql文件中HiveSQL的字段级血缘关系,并将结果提交到datahub python 3.8.16 datahub v0.10.0 详见datahub官网 A Metadata Platform for the Modern Data Stack | DataHub 执行命令 查看版本   将datahub v0.10.0分支下的do

    2024年02月08日
    浏览(42)
  • 基于Python-sqlparse的SQL表血缘追踪解析实现

    目录 前言 一、主线任务 1.数据治理 2.血缘追踪 3.SQL表血缘 二、实现过程 1.目标效果 2.代码实现 1.功能函数识别 2.SQL标准格式  3.解析AST树 4.最终效果: 点关注,防走丢,如有纰漏之处,请留言指教,非常感谢 之前我在两篇SQLparse的开源库解析中就说过自己在寻找在python编程

    2024年02月02日
    浏览(31)
  • 爱奇艺大数据加速:从Hive到Spark SQL

    01 爱奇艺自2012年开展大数据业务以来,基于大数据开源生态服务建设了一系列平台,涵盖了数据采集、数据处理、数据分析、数据应用等整个大数据流程,为公司的运营决策和各种数据智能业务提供了强有力的支持。随着数据规模的不断增长和计算复杂度的增加,如何快速挖

    2024年02月08日
    浏览(41)
  • AI人工智能培训老师叶梓:大数据治理的关键工具:开源数据血缘分析系统

    在大数据时代,数据的产生和传播速度日益加快,数据之间的关系也变得日益复杂。为了更好地管理和理解数据之间的关系,数据血缘分析系统应运而生。本文将介绍几个开源的数据血缘分析系统,它们在数据治理、数据质量管理和数据隐私保护等方面发挥着重要作用。 血缘

    2024年04月23日
    浏览(75)
  • Hive命令行运行SQL将数据保存到本地如何去除日志信息

    先有需求需要查询hive数仓数据并将结果保存到本地,但是在操作过程中总会有日志信息和表头信息一起保存到本地,不符合业务需要,那如何才能解决该问题呢? 废话不多少,直接上代码介绍:

    2024年01月17日
    浏览(75)
  • 【Spark大数据习题】习题_Spark SQL&&&Kafka&& HBase&&Hive

    PDF资源路径-Spark1 PDF资源路径-Spark2 一、填空题 1、Scala语言的特性包含面向对象编程、函数式编程的、静态类型的、可扩展的、可以交互操作的。 2、在Scala数据类型层级结构的底部有两个数据类型,分别是 Nothing和Null。 3、在Scala中,声明变量的有var声明变量和val声明常

    2024年02月06日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包