【python】python课设 天气预测数据分析及可视化(完整源码)

这篇具有很好参考价值的文章主要介绍了【python】python课设 天气预测数据分析及可视化(完整源码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 前言

本文介绍了天气预测数据分析及可视化的实现过程使用joblib导入模型和自定义模块GetModel获取模型,输出模型的MAE。使用pyecharts库进行天气数据的可视化,展示南京当日天气数据的表格。总体来说,该文叙述通过调用自定义模块和第三方库,获取天气数据、进行模型预测,并使用 pyecharts 实现了可视化,展示了南京的实时天气、未来一周的天气趋势以及全国各省会城市今日的天气情况。

2. 项目结构

【python】python课设 天气预测数据分析及可视化(完整源码),Python,python,数据分析,开发语言

  • 天气数据的来源
    GetData文件使用python爬虫技术,爬取南京和全国的天气信息数据
    爬取网站:http://tianqi.2345.com/wea_history/58238.htm
    ProcessDate文件对爬取的天气数据进行了预处理
    几个CSV文件保存的是爬取后并经过处理的数据
  • 天气数据的预测
    GetModel文件通过训练预测模型来预测长春近一周的天气,该文件利用Joblib将模型保存到本地
    Main文件是项目主文件,通过运行该文件即可运行整个项目,该文件前部分获取保存到本地的预测模型来进行预测,并将预测结果打印到控制台
  • 天气数据的可视化
    Main文件后部分实现了天气数据的可视化

3. 详细介绍

3.1 main.py
import joblib
import datetime as DT
import GetModel

from pyecharts.charts import Bar, Grid, Line, Tab
from pyecharts.components import Table
from pyecharts.options import ComponentTitleOpts
from pyecharts.charts import Map
from pyecharts import options as opts


# 训练并保存模型并返回MAE
import ProcessData
import GetData

#import GetModel
r = GetModel.getModel()
print("MAE:", r[0])
# 读取保存的模型
model = joblib.load('Model.pkl')

# 最终预测结果
preds = model.predict(r[1])

print("未来7天预测")
for a in range(1, 8):
    #import datetime as DT
    today = DT.datetime.now()
    time = (today + DT.timedelta(days=a)).date()
    print(time.year, '.', time.month, '.', time.day,
          '最高气温', preds[a][0],
          '最低气温', preds[a][1],
          "空气质量", preds[a][2],
          )


'''
数据可视化代码
通过爬虫获取到的天气信息,利用pyecharts框架来实现绘图功能,实现天气的可视化
'''


'''
可视化当日南京天气数据
'''
# 获取当日南京天气数据
today_data = GetData.getToday(58238)
headers_ = ["日期", "最高温", "最低温", "天气", "风力风向", "空气质量指数"]
rows_ = [
    [today_data['日期'].values[0], today_data['最高温'].values[0], today_data['最低温'].values[0],
     today_data['天气'].values[0], today_data['风力风向'].values[0], today_data['空气质量指数'].values[0]],
]
def table_main() ->Table:
  c=(
    Table()
    .add(headers_, rows_)
    .set_global_opts(
        title_opts=ComponentTitleOpts(title="", subtitle="")
    )
  )
  return c


'''
可视化当日南京近一周的天气质量和气温
'''
# 获取最近七天的天气数据
week_data=GetData.getWeek(58238)
# 最近南京一周的天气和空气
airs = ProcessData.setAir(week_data)
low_temperature = ProcessData.setLowTemp(week_data)
high_temperature = ProcessData.setHighTemp(week_data)

def grid_week() -> Grid:
    x_data = ["前七天", "前六天", "前五天", "前四天", "前三天", "前两天", "前一天"]
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis(
            "最高温",
           high_temperature,
            yaxis_index=0,
            color="#d14a61",
        )
        .add_yaxis(
            "最低温",
            low_temperature,
            yaxis_index=1,
            color="#5793f3",
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                name="最高温",
                type_="value",
                min_=-30,
                max_=40,
                position="right",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#d14a61")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            )
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                type_="value",
                name="天气质量指数",
                min_=0,
                max_=300,
                position="left",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#675bba")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value}"),
                splitline_opts=opts.SplitLineOpts(
                    is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
                ),
            )
        )
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(
                name="最低温",
                min_=-30,
                max_=40,
                position="right",
                offset=80,
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#5793f3")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            ),
            title_opts=opts.TitleOpts(title=""),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        )
    )

    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            "天气质量指数 "
            "优(0~50) 良(51~100) 轻度(101~150) 中度(151~200) 重度(201~300)",
            airs,
            yaxis_index=2,
            color="#675bba",
            label_opts=opts.LabelOpts(is_show=False),
        )
    )

    bar.overlap(line)
    return Grid().add(
        bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True
    )

'''
可视化预测南京的天气
'''

# 预测南京一周的天气和空气
predict_airs=[]
predict_low_temperature=[]
predict_high_temperature=[]
x_data=[]
for i in range(0,7):
    predict_high_temperature.append(round(preds[i][0],4))
    predict_low_temperature.append(round(preds[i][1],4))
    predict_airs.append(round(preds[i][2],4))
    x_data.append((today + DT.timedelta(days=i)).date())

def grid_week_predict() -> Grid:
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis(
            "最高温",
           predict_high_temperature,
            yaxis_index=0,
            color="#d14a61",
        )
        .add_yaxis(
            "最低温",
            predict_low_temperature,
            yaxis_index=1,
            color="#5793f3",
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                name="最高温",
                type_="value",
                min_=-30,
                max_=40,
                position="right",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#d14a61")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            )
        )
        .extend_axis(
            yaxis=opts.AxisOpts(
                type_="value",
                name="天气质量指数",
                min_=0,
                max_=300,
                position="left",
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#675bba")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value}"),
                splitline_opts=opts.SplitLineOpts(
                    is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
                ),
            )
        )
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(
                name="最低温",
                min_=-30,
                max_=40,
                position="right",
                offset=80,
                axisline_opts=opts.AxisLineOpts(
                    linestyle_opts=opts.LineStyleOpts(color="#5793f3")
                ),
                axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
            ),
            title_opts=opts.TitleOpts(title=""),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
        )
    )

    line = (
        Line()
        .add_xaxis(x_data)
        .add_yaxis(
            "天气质量指数 "
            "优(0~50) 良(51~100) 轻度(101~150) 中度(151~200) 重度(201~300)",
            predict_airs,
            yaxis_index=2,
            color="#675bba",
            label_opts=opts.LabelOpts(is_show=False),
        )
    )

    bar.overlap(line)
    return Grid().add(
        bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True
    )




'''
获取全国各省会城市今日的天气情况
'''
china_today = GetData.getChinaToday()
china_today.to_csv("china_today.csv")


def setData(str,i):
    return china_today[i:i+1][str].values[0]
provinces = [
    "黑龙江","内蒙古", "吉林",  "辽宁", "河北","天津","山西", "陕西",
    "甘肃","宁夏", "青海","新疆", "西藏", "四川", "重庆", "山东", "河南",
    "江苏", "安徽","湖北", "浙江", "福建", "江西", "湖南", "贵州",
    "广西", "海南","上海","广东","云南","台湾"
]
rows=[]
for i in range(0,31):
    rows.append([provinces[i],setData('最低温',i),setData('最高温',i),setData('天气',i),setData('风力风向',i)])


def today_china_table() ->Table:
  c=(
    Table()
    .add(["省份","最低温","最高温", "天气", "风力风向"], rows)
    .set_global_opts(
     title_opts=ComponentTitleOpts(title="今日全国各省会城市的天气信息表", subtitle="")
  )
  )
  return c


china_airs = ProcessData.setAir(china_today)
airs_list=[]
for i in range(0,31):
    airs_list.append(china_airs[i])



# 分页图的标题
tab = Tab()
tab.add(table_main(), "今日南京")
tab.add(grid_week_predict(), "未来南京")
tab.add(grid_week(), "近一周南京")
tab.add(today_china_table(), "今日中国天气")
tab.render("天气网.html")


'''
 
    all_high_t = []
    all_low_t = []
    all_air = []
    all_high_t.append(preds[a][0])
    all_low_t.append(preds[a][1])
    all_air.append(preds[a][2])
temp = {"最高温": all_high_t, "最低温": all_low_t, "空气质量": all_air}
# 绘画折线图
plt.plot(range(1, 7), temp["最高温"], color="red", label="high_t")
plt.plot(range(1, 7), temp["最低温"], color="blue", label="low_t")
plt.legend()  # 显示图例
plt.ylabel("Temperature(°C)")
plt.xlabel("day")
# 显示
plt.show()
plt.plot(range(1, 7), temp["空气质量"], color="black", label="air")
plt.legend()
plt.ylabel(" ")
plt.xlabel("day")
plt.show()
'''
3.2 GetModel.py

from sklearn.ensemble import RandomForestRegressor
import joblib
from sklearn.metrics import mean_absolute_error
import ProcessData


# 训练并保存模型
def getModel(a="Model.pkl"):
    
    # 获取测试集、训练集、验证集
    [X_train, X_valid, y_train, y_valid, X_test] = ProcessData.ProcessData()

    # 随机树森林模型
    model = RandomForestRegressor(random_state=0, n_estimators=1001)
    # 训练模型
    model.fit(X_train, y_train)
    # 预测模型
    preds = model.predict(X_valid)
    # 用MAE评估
    score = mean_absolute_error(y_valid, preds)
    # 保存模型到本地
    joblib.dump(model, a)
    # 返回MAE
    return [score, X_test]

3.3 GetData.py
import requests
import pandas as pd
import datetime


# 提供年份和月份,爬取对应的的表格数据
url = "http://tianqi.2345.com/Pc/GetHistory"
headers = {
   "User-Agent":
       """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.41 Safari/537.36 Edg/101.0.1210.32"""
}

def craw_table(id,year,month):
    params = {
        "areaInfo[areaId]": id,
        "areaInfo[areaType]": 2,
        "date[year]": year,
        "date[month]": month
    }
    resq = requests.get(url, headers=headers, params=params)
    data = resq.json()["data"]
    # data frame
    df = pd.read_html(data)[0]
    return df


# 输入城市id,爬取该城市今日的天气数据
def getToday(id):
    # 获取当前年份和月份
    today = datetime.datetime.today()
    year = today.year
    month = today.month
    # 获取当日南京天气数据
    month_data =craw_table(id, year, month)
    return month_data.tail(1)

# 输入城市id,爬取该城市近七周的天气数据
def getWeek(id):
    # 获取当前年份和月份
    today = datetime.datetime.today()
    year = today.year
    month = today.month
    # 获取当日南京天气数据
    month_data =craw_table(id, year, month)
    return month_data.tail(7)

# 爬取全国各个省会城市的今日的天气数据
def getChinaToday():
    ids=[50953, 53463,58238,54342,53698,54527,53772,57036 ,52889,53614,52866,51463,
          55591, 56294, 57516,54823,57083,58238, 58321, 57494, 58457,58847,58606,
          57687,57816 ,59431,59758 ,58362 ,59287,56778,59554]
    list=[]
    for i in ids:
        df=getToday(i)
        list.append(df)
    return pd.concat(list).reset_index(drop=True)

# 获取南京最近3年的天气数据,用于预测
def getYears():
    today = datetime.datetime.today()
    df_list = []
    for year in range(today.year-5, today.year):
      for month in range(1, 13):
          df = craw_table(58238,year, month)
          df_list.append(df)

    for month in range(1,today.month+1):
        df = craw_table(58238, today.year, month)
        df_list.append(df)
     # 多年数据合并
    return pd.concat(df_list).reset_index(drop=True)

# 传入一个时间范围,获取某个时间范围的天气数据
def getPredictDate(year0,month0,day0,year1,month1,day1):
    id=58238
    date_list=[]
    if month0!=month1:
      date0=craw_table(id,year0,month0)
      date_ago=date0[day0-1:]
      date1 = craw_table(id,year1, month1)
      date_pre = date1[:day1]

      date_list.append(date_ago)
      date_list.append(date_pre)
      date=pd.concat(date_list).reset_index(drop=True)
    else:
      date0 = craw_table(id, year0, month0)
      date=date0[day0-1:day1]
    return date
3.4 ProcessData.py
from calendar import isleap

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
import GetData
import datetime as DT
'''
处理预测数据
'''


def setAir(week_data):
    airs = []
    for i in week_data['空气质量指数']:
        if isinstance(i, float) or pd.isna(i):
            airs.append(7)  # 或者你偏好的缺失数据的任何默认值
        elif '-' in str(i):
            airs.append(7)
        else:
            i = str(i).split(' ')[0]
            airs.append(int(i))
    return airs

# 气温数据处理:去掉数据的单位°并把数据变为整形
def setHighTemp(week_data):
    temperature = []
    for i in week_data['最高温']:
        i = i.split('°')[0]
        temperature.append(int(i))
    return temperature

def setLowTemp(week_data):
    temperature = []
    for i in week_data['最低温']:
        i = i.split('°')[0]
        temperature.append(int(i))
    return temperature

# 处理天气数据,为天气状态编码
def setCondition(week_data):
    # 天气状况编码
  flag = []
  for StringData in week_data['最低温']:
    if '晴' in str(StringData):
        flag.append(1)
    elif '多云' in str(StringData):
        flag.append(2)
    elif '阴' in str(StringData):
        flag.append(3)
    elif '雨' in str(StringData):
        flag.append(4)
    elif '雪' in str(StringData):
        flag.append(5)
    elif '雾' in str(StringData) or '霾' in str(StringData):
        flag.append(6)
    elif  '扬沙' in str(StringData):
        flag.append(7)
    else:
        flag.append(-1)
    return flag

def process(date):
   date['最高温']=setHighTemp(date)
   date['最低温']=setLowTemp(date)
   date['空气质量指数']=setAir(date)
   date1=date.drop('天气', axis=1)
   date2=date1.drop('风力风向',axis=1)
   return date2

#原来
def write(years, months,c):
 
    # 取现在日期
    today = DT.datetime.today()
    # 闰年片段
    st = isleap(today.year)

    week_ago = (today - DT.timedelta(days=months[0])).date()
    
    week_pre = (today + DT.timedelta(days=months[1])).date()
    if week_ago.month + week_pre.month == 3 or week_ago.month + week_pre.month == 5:
        if week_ago.month == 2 and not st == isleap(today.year - years[0]):
            if st:
                # 今年是,去年或未来不是,所以-1
                week_ago -= DT.timedelta(days=1)
            else:
                # 今年不是,去年或未来是,所以+1
                week_ago += DT.timedelta(days=1)
   
    # 爬取数据
    id =58238
    # 取到预处理后的用来预测的数据
    date0 = GetData.getPredictDate(week_ago.year-years[0],week_ago.month,week_ago.day,week_pre.year-years[1],week_pre.month,week_pre.day)
    date_=process(date0).set_index("日期")
    date_.to_csv(c)





# 功能: 对用来预测的数据进行预处理

def ProcessData():

    # 写入csv
    write([1,1], [14, 0], "date_train.csv")
    write([1,1],  [0, 14], "date_valid.csv")
    write([0,0], [14, 0], "date_test.csv")

    X_test = pd.read_csv("date_test.csv", index_col="日期", parse_dates=True)
    # 读取测试集和验证集
    X = pd.read_csv("date_train.csv", index_col="日期", parse_dates=True)
    y = pd.read_csv("date_valid.csv", index_col="日期", parse_dates=True)

    my_imputer = SimpleImputer()
    # train_test_split()是sklearn包的model_selection模块中提供的随机划分训练集和测试集的函数;
    # 使用train_test_split函数可以将原始数据集按照一定比例划分训练集和测试集对模型进行训练

    X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)

    imputed_X_train = pd.DataFrame(my_imputer.fit_transform(X_train))
    imputed_X_valid = pd.DataFrame(my_imputer.transform(X_valid))
    imputed_X_train.columns = X_train.columns
    imputed_X_valid.columns = X_valid.columns
    imputed_y_train = pd.DataFrame(my_imputer.fit_transform(y_train))
    imputed_y_valid = pd.DataFrame(my_imputer.transform(y_valid))
    imputed_y_train.columns = y_train.columns
    imputed_y_valid.columns = y_valid.columns
    imputed_X_test = pd.DataFrame(my_imputer.fit_transform(X_test))

    # 返回分割后的数据集
    return [imputed_X_train, imputed_X_valid, imputed_y_train, imputed_y_valid, imputed_X_test]



3.5天气网.html
<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <title>Awesome-pyecharts</title>
                <script type="text/javascript" src="https://assets.pyecharts.org/assets/v5/echarts.min.js"></script>

    
</head>
<body >
            <style>
        .tab {
            overflow: hidden;
            border: 1px solid #ccc;
            background-color: #f1f1f1;
        }

        .tab button {
            background-color: inherit;
            float: left;
            border: none;
            outline: none;
            cursor: pointer;
            padding: 12px 16px;
            transition: 0.3s;
        }

        .tab button:hover {
            background-color: #ddd;
        }

        .tab button.active {
            background-color: #ccc;
        }

        .chart-container {
            display: block;
        }

        .chart-container:nth-child(n+2) {
            display: none;
        }
    </style>
    <div class="tab">
            <button class="tablinks" onclick="showChart(event, 'c95a7006653c463b87ea5f86fb2fa9d6')">今日南京</button>
            <button class="tablinks" onclick="showChart(event, 'd51b7fb3725d442fafd9365201317690')">未来南京</button>
            <button class="tablinks" onclick="showChart(event, '87f0e6e843f443f986ad5a3539b28a78')">近一周南京</button>
            <button class="tablinks" onclick="showChart(event, '2e9b063085384e43805f0f24afc63b80')">今日中国天气</button>
    </div>

    <div class="box">
                        <style>
            .fl-table {
                margin: 20px;
                border-radius: 5px;
                font-size: 12px;
                border: none;
                border-collapse: collapse;
                max-width: 100%;
                white-space: nowrap;
                word-break: keep-all;
            }

            .fl-table th {
                text-align: left;
                font-size: 20px;
            }

            .fl-table tr {
                display: table-row;
                vertical-align: inherit;
                border-color: inherit;
            }

            .fl-table tr:hover td {
                background: #00d1b2;
                color: #F8F8F8;
            }

            .fl-table td, .fl-table th {
                border-style: none;
                border-top: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-bottom: 3px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                padding: .5em .55em;
                font-size: 15px;
            }

            .fl-table td {
                border-style: none;
                font-size: 15px;
                vertical-align: center;
                border-bottom: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                height: 30px;
            }

            .fl-table tr:nth-child(even) {
                background: #F8F8F8;
            }
        </style>
        <div id="c95a7006653c463b87ea5f86fb2fa9d6" class="chart-container" style="">
            <p class="title" style="font-size: 18px; font-weight:bold;" > </p>
            <p class="subtitle" style="font-size: 12px;" > </p>
            <table class="fl-table">
    <thead>
        <tr>
            <th>日期</th>
            <th>最高温</th>
            <th>最低温</th>
            <th>天气</th>
            <th>风力风向</th>
            <th>空气质量指数</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>2023-12-19 周二</td>
            <td>1°</td>
            <td>-3°</td>
            <td>小雪~多云</td>
            <td>西北风2</td>
            <td>66</td>
        </tr>
    </tbody>
</table>
        </div>

                <div id="d51b7fb3725d442fafd9365201317690" class="chart-container" style="width:900px; height:500px; "></div>
    <script>
            document.getElementById('d51b7fb3725d442fafd9365201317690').style.width = document.getElementById('d51b7fb3725d442fafd9365201317690').parentNode.clientWidth + 'px';
        var chart_d51b7fb3725d442fafd9365201317690 = echarts.init(
            document.getElementById('d51b7fb3725d442fafd9365201317690'), 'white', {renderer: 'canvas'});
        var option_d51b7fb3725d442fafd9365201317690 = {
    "animation": true,
    "animationThreshold": 2000,
    "animationDuration": 1000,
    "animationEasing": "cubicOut",
    "animationDelay": 0,
    "animationDurationUpdate": 300,
    "animationEasingUpdate": "cubicOut",
    "animationDelayUpdate": 0,
    "aria": {
        "enabled": false
    },
    "color": [
        "#d14a61",
        "#5793f3",
        "#675bba",
        "#5470c6",
        "#91cc75",
        "#fac858",
        "#ee6666",
        "#73c0de",
        "#3ba272",
        "#fc8452",
        "#9a60b4",
        "#ea7ccc"
    ],
    "series": [
        {
            "type": "bar",
            "name": "\u6700\u9ad8\u6e29",
            "yAxisIndex": 0,
            "legendHoverLink": true,
            "data": [
                6.8277,
                6.3958,
                6.3958,
                6.3958,
                6.4043,
                8.8561,
                8.8247
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "bar",
            "name": "\u6700\u4f4e\u6e29",
            "yAxisIndex": 1,
            "legendHoverLink": true,
            "data": [
                -1.2148,
                -2.0799,
                -2.0799,
                -2.0799,
                -2.5325,
                2.0839,
                2.1768
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "line",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)",
            "connectNulls": false,
            "xAxisIndex": 0,
            "yAxisIndex": 2,
            "symbolSize": 4,
            "showSymbol": true,
            "smooth": false,
            "clip": true,
            "step": false,
            "data": [
                [
                    "2023-12-20",
                    16.4505
                ],
                [
                    "2023-12-21",
                    13.8302
                ],
                [
                    "2023-12-22",
                    13.8302
                ],
                [
                    "2023-12-23",
                    13.8302
                ],
                [
                    "2023-12-24",
                    14.8611
                ],
                [
                    "2023-12-25",
                    74.2737
                ],
                [
                    "2023-12-26",
                    67.959
                ]
            ],
            "hoverAnimation": true,
            "label": {
                "show": false,
                "margin": 8
            },
            "logBase": 10,
            "seriesLayoutBy": "column",
            "lineStyle": {
                "show": true,
                "width": 1,
                "opacity": 1,
                "curveness": 0,
                "type": "solid"
            },
            "areaStyle": {
                "opacity": 0
            },
            "zlevel": 0,
            "z": 0
        }
    ],
    "legend": [
        {
            "data": [
                "\u6700\u9ad8\u6e29",
                "\u6700\u4f4e\u6e29",
                "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)"
            ],
            "selected": {},
            "show": true,
            "padding": 5,
            "itemGap": 10,
            "itemWidth": 25,
            "itemHeight": 14,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "borderRadius": 0,
            "pageButtonItemGap": 5,
            "pageButtonPosition": "end",
            "pageFormatter": "{current}/{total}",
            "pageIconColor": "#2f4554",
            "pageIconInactiveColor": "#aaa",
            "pageIconSize": 15,
            "animationDurationUpdate": 800,
            "selector": false,
            "selectorPosition": "auto",
            "selectorItemGap": 7,
            "selectorButtonGap": 10
        }
    ],
    "tooltip": {
        "show": true,
        "trigger": "axis",
        "triggerOn": "mousemove|click",
        "axisPointer": {
            "type": "cross"
        },
        "showContent": true,
        "alwaysShowContent": false,
        "showDelay": 0,
        "hideDelay": 100,
        "enterable": false,
        "confine": false,
        "appendToBody": false,
        "transitionDuration": 0.4,
        "textStyle": {
            "fontSize": 14
        },
        "borderWidth": 0,
        "padding": 5,
        "order": "seriesAsc"
    },
    "xAxis": [
        {
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "inverse": false,
            "offset": 0,
            "splitNumber": 5,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            },
            "data": [
                "2023-12-20",
                "2023-12-21",
                "2023-12-22",
                "2023-12-23",
                "2023-12-24",
                "2023-12-25",
                "2023-12-26"
            ]
        }
    ],
    "yAxis": [
        {
            "name": "\u6700\u4f4e\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#5793f3"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 80,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u6700\u9ad8\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#d14a61"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 0,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#675bba"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value}"
            },
            "inverse": false,
            "position": "left",
            "offset": 0,
            "splitNumber": 5,
            "min": 0,
            "max": 300,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        }
    ],
    "title": [
        {
            "show": true,
            "target": "blank",
            "subtarget": "blank",
            "padding": 5,
            "itemGap": 10,
            "textAlign": "auto",
            "textVerticalAlign": "auto",
            "triggerEvent": false
        }
    ],
    "grid": [
        {
            "show": false,
            "zlevel": 0,
            "z": 2,
            "left": "5%",
            "right": "20%",
            "containLabel": false,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "shadowOffsetX": 0,
            "shadowOffsetY": 0
        }
    ]
};
        chart_d51b7fb3725d442fafd9365201317690.setOption(option_d51b7fb3725d442fafd9365201317690);
    </script>
                <div id="87f0e6e843f443f986ad5a3539b28a78" class="chart-container" style="width:900px; height:500px; "></div>
    <script>
            document.getElementById('87f0e6e843f443f986ad5a3539b28a78').style.width = document.getElementById('87f0e6e843f443f986ad5a3539b28a78').parentNode.clientWidth + 'px';
        var chart_87f0e6e843f443f986ad5a3539b28a78 = echarts.init(
            document.getElementById('87f0e6e843f443f986ad5a3539b28a78'), 'white', {renderer: 'canvas'});
        var option_87f0e6e843f443f986ad5a3539b28a78 = {
    "animation": true,
    "animationThreshold": 2000,
    "animationDuration": 1000,
    "animationEasing": "cubicOut",
    "animationDelay": 0,
    "animationDurationUpdate": 300,
    "animationEasingUpdate": "cubicOut",
    "animationDelayUpdate": 0,
    "aria": {
        "enabled": false
    },
    "color": [
        "#d14a61",
        "#5793f3",
        "#675bba",
        "#5470c6",
        "#91cc75",
        "#fac858",
        "#ee6666",
        "#73c0de",
        "#3ba272",
        "#fc8452",
        "#9a60b4",
        "#ea7ccc"
    ],
    "series": [
        {
            "type": "bar",
            "name": "\u6700\u9ad8\u6e29",
            "yAxisIndex": 0,
            "legendHoverLink": true,
            "data": [
                10,
                13,
                2,
                0,
                0,
                1,
                1
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "bar",
            "name": "\u6700\u4f4e\u6e29",
            "yAxisIndex": 1,
            "legendHoverLink": true,
            "data": [
                5,
                5,
                -3,
                -5,
                -2,
                -2,
                -3
            ],
            "realtimeSort": false,
            "showBackground": false,
            "stackStrategy": "samesign",
            "cursor": "pointer",
            "barMinHeight": 0,
            "barCategoryGap": "20%",
            "barGap": "30%",
            "large": false,
            "largeThreshold": 400,
            "seriesLayoutBy": "column",
            "datasetIndex": 0,
            "clip": true,
            "zlevel": 0,
            "z": 2,
            "label": {
                "show": true,
                "margin": 8
            }
        },
        {
            "type": "line",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)",
            "connectNulls": false,
            "xAxisIndex": 0,
            "yAxisIndex": 2,
            "symbolSize": 4,
            "showSymbol": true,
            "smooth": false,
            "clip": true,
            "step": false,
            "data": [
                [
                    "\u524d\u4e03\u5929",
                    59
                ],
                [
                    "\u524d\u516d\u5929",
                    63
                ],
                [
                    "\u524d\u4e94\u5929",
                    29
                ],
                [
                    "\u524d\u56db\u5929",
                    50
                ],
                [
                    "\u524d\u4e09\u5929",
                    26
                ],
                [
                    "\u524d\u4e24\u5929",
                    42
                ],
                [
                    "\u524d\u4e00\u5929",
                    66
                ]
            ],
            "hoverAnimation": true,
            "label": {
                "show": false,
                "margin": 8
            },
            "logBase": 10,
            "seriesLayoutBy": "column",
            "lineStyle": {
                "show": true,
                "width": 1,
                "opacity": 1,
                "curveness": 0,
                "type": "solid"
            },
            "areaStyle": {
                "opacity": 0
            },
            "zlevel": 0,
            "z": 0
        }
    ],
    "legend": [
        {
            "data": [
                "\u6700\u9ad8\u6e29",
                "\u6700\u4f4e\u6e29",
                "\u5929\u6c14\u8d28\u91cf\u6307\u6570 \u4f18(0~50) \u826f(51~100) \u8f7b\u5ea6(101~150) \u4e2d\u5ea6(151~200) \u91cd\u5ea6(201~300)"
            ],
            "selected": {},
            "show": true,
            "padding": 5,
            "itemGap": 10,
            "itemWidth": 25,
            "itemHeight": 14,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "borderRadius": 0,
            "pageButtonItemGap": 5,
            "pageButtonPosition": "end",
            "pageFormatter": "{current}/{total}",
            "pageIconColor": "#2f4554",
            "pageIconInactiveColor": "#aaa",
            "pageIconSize": 15,
            "animationDurationUpdate": 800,
            "selector": false,
            "selectorPosition": "auto",
            "selectorItemGap": 7,
            "selectorButtonGap": 10
        }
    ],
    "tooltip": {
        "show": true,
        "trigger": "axis",
        "triggerOn": "mousemove|click",
        "axisPointer": {
            "type": "cross"
        },
        "showContent": true,
        "alwaysShowContent": false,
        "showDelay": 0,
        "hideDelay": 100,
        "enterable": false,
        "confine": false,
        "appendToBody": false,
        "transitionDuration": 0.4,
        "textStyle": {
            "fontSize": 14
        },
        "borderWidth": 0,
        "padding": 5,
        "order": "seriesAsc"
    },
    "xAxis": [
        {
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "inverse": false,
            "offset": 0,
            "splitNumber": 5,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            },
            "data": [
                "\u524d\u4e03\u5929",
                "\u524d\u516d\u5929",
                "\u524d\u4e94\u5929",
                "\u524d\u56db\u5929",
                "\u524d\u4e09\u5929",
                "\u524d\u4e24\u5929",
                "\u524d\u4e00\u5929"
            ]
        }
    ],
    "yAxis": [
        {
            "name": "\u6700\u4f4e\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#5793f3"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 80,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u6700\u9ad8\u6e29",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#d14a61"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value} \u00b0C"
            },
            "inverse": false,
            "position": "right",
            "offset": 0,
            "splitNumber": 5,
            "min": -30,
            "max": 40,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        },
        {
            "type": "value",
            "name": "\u5929\u6c14\u8d28\u91cf\u6307\u6570",
            "show": true,
            "scale": false,
            "nameLocation": "end",
            "nameGap": 15,
            "gridIndex": 0,
            "axisLine": {
                "show": true,
                "onZero": true,
                "onZeroAxisIndex": 0,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid",
                    "color": "#675bba"
                }
            },
            "axisLabel": {
                "show": true,
                "margin": 8,
                "formatter": "{value}"
            },
            "inverse": false,
            "position": "left",
            "offset": 0,
            "splitNumber": 5,
            "min": 0,
            "max": 300,
            "minInterval": 0,
            "splitLine": {
                "show": true,
                "lineStyle": {
                    "show": true,
                    "width": 1,
                    "opacity": 1,
                    "curveness": 0,
                    "type": "solid"
                }
            }
        }
    ],
    "title": [
        {
            "show": true,
            "target": "blank",
            "subtarget": "blank",
            "padding": 5,
            "itemGap": 10,
            "textAlign": "auto",
            "textVerticalAlign": "auto",
            "triggerEvent": false
        }
    ],
    "grid": [
        {
            "show": false,
            "zlevel": 0,
            "z": 2,
            "left": "5%",
            "right": "20%",
            "containLabel": false,
            "backgroundColor": "transparent",
            "borderColor": "#ccc",
            "borderWidth": 1,
            "shadowOffsetX": 0,
            "shadowOffsetY": 0
        }
    ]
};
        chart_87f0e6e843f443f986ad5a3539b28a78.setOption(option_87f0e6e843f443f986ad5a3539b28a78);
    </script>
                        <style>
            .fl-table {
                margin: 20px;
                border-radius: 5px;
                font-size: 12px;
                border: none;
                border-collapse: collapse;
                max-width: 100%;
                white-space: nowrap;
                word-break: keep-all;
            }

            .fl-table th {
                text-align: left;
                font-size: 20px;
            }

            .fl-table tr {
                display: table-row;
                vertical-align: inherit;
                border-color: inherit;
            }

            .fl-table tr:hover td {
                background: #00d1b2;
                color: #F8F8F8;
            }

            .fl-table td, .fl-table th {
                border-style: none;
                border-top: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-bottom: 3px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                padding: .5em .55em;
                font-size: 15px;
            }

            .fl-table td {
                border-style: none;
                font-size: 15px;
                vertical-align: center;
                border-bottom: 1px solid #dbdbdb;
                border-left: 1px solid #dbdbdb;
                border-right: 1px solid #dbdbdb;
                height: 30px;
            }

            .fl-table tr:nth-child(even) {
                background: #F8F8F8;
            }
        </style>
        <div id="2e9b063085384e43805f0f24afc63b80" class="chart-container" style="">
            <p class="title" style="font-size: 18px; font-weight:bold;" > 今日全国各省会城市的天气信息表</p>
            <p class="subtitle" style="font-size: 12px;" > </p>
            <table class="fl-table">
    <thead>
        <tr>
            <th>省份</th>
            <th>最低温</th>
            <th>最高温</th>
            <th>天气</th>
            <th>风力风向</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>黑龙江</td>
            <td>-29°</td>
            <td>-20°</td>
            <td>多云</td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>内蒙古</td>
            <td>-26°</td>
            <td>-16°</td>
            <td>~</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>吉林</td>
            <td>-3°</td>
            <td>1°</td>
            <td>小雪~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>辽宁</td>
            <td>-25°</td>
            <td>-11°</td>
            <td>~多云</td>
            <td>北风3</td>
        </tr>
        <tr>
            <td>河北</td>
            <td>-11°</td>
            <td>-2°</td>
            <td>多云~</td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>天津</td>
            <td>-11°</td>
            <td>-5°</td>
            <td></td>
            <td>西北风4</td>
        </tr>
        <tr>
            <td>山西</td>
            <td>-16°</td>
            <td>-2°</td>
            <td>多云~</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>陕西</td>
            <td>-3°</td>
            <td>4°</td>
            <td>~多云</td>
            <td>东北风3</td>
        </tr>
        <tr>
            <td>甘肃</td>
            <td>-10°</td>
            <td>-1°</td>
            <td></td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>宁夏</td>
            <td>-17°</td>
            <td>-8°</td>
            <td>多云~</td>
            <td>东风2</td>
        </tr>
        <tr>
            <td>青海</td>
            <td>-13°</td>
            <td>4°</td>
            <td>多云~</td>
            <td>西风2</td>
        </tr>
        <tr>
            <td>新疆</td>
            <td>-22°</td>
            <td>-18°</td>
            <td>多云~</td>
            <td>东南风1</td>
        </tr>
        <tr>
            <td>西藏</td>
            <td>-5°</td>
            <td>6°</td>
            <td></td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>四川</td>
            <td>1°</td>
            <td>10°</td>
            <td></td>
            <td>东南风2</td>
        </tr>
        <tr>
            <td>重庆</td>
            <td>4°</td>
            <td>8°</td>
            <td>~多云</td>
            <td>东北风1</td>
        </tr>
        <tr>
            <td>山东</td>
            <td>-13°</td>
            <td>-2°</td>
            <td>多云~</td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>河南</td>
            <td>-6°</td>
            <td>3°</td>
            <td>多云~</td>
            <td>东北风2</td>
        </tr>
        <tr>
            <td>江苏</td>
            <td>-3°</td>
            <td>1°</td>
            <td>小雪~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>安徽</td>
            <td>-5°</td>
            <td>1°</td>
            <td>~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>湖北</td>
            <td>-3°</td>
            <td>5°</td>
            <td>~多云</td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>浙江</td>
            <td>0°</td>
            <td>3°</td>
            <td></td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>福建</td>
            <td>10°</td>
            <td>15°</td>
            <td>~小雨</td>
            <td>东北风1</td>
        </tr>
        <tr>
            <td>江西</td>
            <td>1°</td>
            <td>3°</td>
            <td>多云</td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>湖南</td>
            <td>0°</td>
            <td>4°</td>
            <td>雨夹雪~多云</td>
            <td>西北风2</td>
        </tr>
        <tr>
            <td>贵州</td>
            <td>-1°</td>
            <td>2°</td>
            <td></td>
            <td>东北风3</td>
        </tr>
        <tr>
            <td>广西</td>
            <td>7°</td>
            <td>10°</td>
            <td></td>
            <td>北风2</td>
        </tr>
        <tr>
            <td>海南</td>
            <td>12°</td>
            <td>15°</td>
            <td>小雨~</td>
            <td>东北风4</td>
        </tr>
        <tr>
            <td>上海</td>
            <td>0°</td>
            <td>5°</td>
            <td>小雨~</td>
            <td>西北风3</td>
        </tr>
        <tr>
            <td>广东</td>
            <td>7°</td>
            <td>11°</td>
            <td>~多云</td>
            <td>北风4</td>
        </tr>
        <tr>
            <td>云南</td>
            <td>5°</td>
            <td>18°</td>
            <td>多云</td>
            <td>西南风3</td>
        </tr>
        <tr>
            <td>台湾</td>
            <td>19°</td>
            <td>28°</td>
            <td>~小雨</td>
            <td>北风3</td>
        </tr>
    </tbody>
</table>
        </div>

    </div>

    <script>
    </script>
    <script>
        (function() {
            containers = document.getElementsByClassName("chart-container");
            if(containers.length > 0) {
                containers[0].style.display = "block";
            }
        })()

        function showChart(evt, chartID) {
            let containers = document.getElementsByClassName("chart-container");
            for (let i = 0; i < containers.length; i++) {
                containers[i].style.display = "none";
            }

            let tablinks = document.getElementsByClassName("tablinks");
            for (let i = 0; i < tablinks.length; i++) {
                tablinks[i].className = "tablinks";
            }

            document.getElementById(chartID).style.display = "block";
            evt.currentTarget.className += " active";
        }
    </script>
</body>
</html>

4. 成果展示

【python】python课设 天气预测数据分析及可视化(完整源码),Python,python,数据分析,开发语言
【python】python课设 天气预测数据分析及可视化(完整源码),Python,python,数据分析,开发语言文章来源地址https://www.toymoban.com/news/detail-762310.html

到了这里,关于【python】python课设 天气预测数据分析及可视化(完整源码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python爬取天气数据并进行分析与预测

    随着全球气候的不断变化,对于天气数据的获取、分析和预测显得越来越重要。本文将介绍如何使用Python编写一个简单而强大的天气数据爬虫,并结合相关库实现对历史和当前天气数据进行分析以及未来趋势预测。 1 、数据源选择 选择可靠丰富的公开API或网站作为我们所需的

    2024年02月09日
    浏览(51)
  • Python采集天气数据,做可视化分析【附源码】

    动态数据抓包 requests发送请求 结构化+非结构化数据解析 python 3.8 运行代码 pycharm 2021.2 辅助敲代码 requests 如果安装python第三方模块: win + R 输入 cmd 点击确定, 输入安装命令 pip install 模块名 (pip install requests)回车 在pycharm中点击Terminal(终端) 输入安装命令 发送请求 获取数据 解析

    2024年02月09日
    浏览(40)
  • python爬取天气数据并做可视化分析

    历史天气数据schema { ‘当日信息’:\\\'2023-01-01 星期日\\\', \\\'最高气温\\\': 8℃\\\'\\\', \\\'最低气温\\\': \\\'5℃\\\', ‘天气’: \\\'多云\\\', \\\'风向信息\\\':\\\'北风 3级\\\' } 1.导入库 2.对程序进行伪装 3.抓取天气数据 在数据存储前,对数据进行处理,便于后期的数据分析。将上面的“当天信息”字段拆分为“日期”

    2024年02月04日
    浏览(45)
  • 基于Python的网络爬虫爬取天气数据可视化分析

    目录 摘 要 1 一、 设计目的 2 二、 设计任务内容 3 三、 常用爬虫框架比较 3 四、网络爬虫程序总体设计 3 四、 网络爬虫程序详细设计 4 4.1设计环境和目标分析 4 4.2爬虫运行流程分析 5 爬虫基本流程 5 发起请求 5 获取响应内容 5 解析数据 5 保存数据 5 Request和Response 5 Request 5

    2024年02月08日
    浏览(52)
  • 【Python】实现爬虫(完整版),爬取天气数据并进行可视化分析

    ✌️✌️✌️大家好呀,你们的作业侠又轰轰轰的出现了,这次给大家带来的是python爬虫,实现的是爬取某城市的天气信息并使用matplotlib进行图形化分析✌️✌️✌️ 要源码可私聊我。 大家的关注就是我作业侠源源不断的动力,大家喜欢的话,期待三连呀😊😊😊 往期源码

    2024年02月05日
    浏览(48)
  • 毕业设计:python全国天气气象数据爬取分析可视化系统+大屏+大数据(源码+文档)

    博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久,选择我们就是选择放心、选择安心毕业✌ 毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏) 毕业设计:2023-2024年最新最全计算机专

    2024年02月02日
    浏览(54)
  • Python-基于长短期记忆网络(LSTM)的SP500的股票价格预测 股价预测 Python数据分析实战 数据可视化 时序数据预测 变种RNN 股票预测

    Python-基于长短期记忆网络(LSTM)的SP500的股票价格预测 股价预测 Python数据分析实战 数据可视化 时序数据预测 变种RNN 股票预测 近些年,随着计算机技术的不断发展,神经网络在预测方面的应用愈加广泛,尤其是长短期记忆人工神经网络(Long Short-Term Memory,LSTM)在各领域、各

    2024年02月03日
    浏览(50)
  • 数据分析毕业设计 大数据糖尿病预测与可视化 - 机器学习 python

    # 1 前言 🚩 基于机器学习与大数据的糖尿病预测 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 选题指导,项目分享: https://gitee.com/yaa-dc/warehouse-1/blob/master/python/README.md 本项目的目的主要是对糖尿病进行预测。主要依托某医院体检数

    2024年02月08日
    浏览(55)
  • 基于python的网络爬虫爬取天气数据及可视化分析(Matplotlib、sk-learn等,包括ppt,视频)

    基于python的网络爬虫爬取天气数据及可视化分析 可以看看演示视频。 基于Python爬取天气数据信息与可视化分析 本论文旨在利用Python编程语言实现天气数据信息的爬取和可视化分析。天气数据对于人们的生活和各个领域都有着重要的影响,因此准确获取和有效分析天气数据对

    2024年02月03日
    浏览(50)
  • 基于python集成学习算法XGBoost农业数据可视化分析预测系统

    基于python机器学习XGBoost算法农业数据可视化分析预测系统,旨在帮助农民和相关从业者更好地预测农作物产量,以优化农业生产。该系统主要包括四个功能模块。 首先,农作物数据可视化模块利用Echarts、Ajax、Flask、PyMysql技术实现了可视化展示农作物产量相关数据的功能。

    2024年01月21日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包