ES通过抽样agg聚合性能提升3-5倍

这篇具有很好参考价值的文章主要介绍了ES通过抽样agg聚合性能提升3-5倍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        一直以来,es的agg聚合分析性能都比较差(对应sql的 group by)。特别是在超多数据中做聚合,在搜索的条件命中特别多结果的情况下,聚合分析会非常非常的慢。
        一个聚合条件:聚合分析请求的时间 = search time + agg time
        N个聚合条件:聚合分析请求的时间 = search time + agg time * N
        
        搜索的数据范围越大,聚合请求时间越长。
        搜索条件命中的数据越多,聚合请求的时间越长。
        搜索的字段,不一样的值越多,聚合请求时间越长。例如性别字段,通常仅有3个取值(男、女、未知),这种属于取值少的。像邮箱字段,值非常多,上亿个。这种就属于高基数字段。同样的搜索条件,高基数字段的聚合耗时会多非常多!
        聚合请求时候非常吃cpu 和io资源的。通常在大数据检索场景下,很难支持高并发的聚合。并发上去以后,先是CPU飙升,再是IO飙升,随之load很高很高。其根本原因,从agg聚合的源码来看。因为聚合请求分为两个阶段,先根据条件查询数据。然后将命中的全部数据,放在内存中做计算。在第二个过程中,因为将所有命中的数据全部取回来,然后做计算,就涉及到了非常多的小文件的IO。IO会蹭蹭蹭的飙升。
        就目前而言,在不改源码的情况下,聚合性能很难有很大的突破。本篇文章,通过抽样的思路,通过抽取分片,相当于数据剪枝的方式,来节省资源消耗。提升聚合分析性能,提升大概在3-5倍。随着数据越多,分片越多,资源越少,性能提升效果越明显。
        我个人是做万亿级内容数据检索的。负责搜索集群,负责搜索优化。聚合分析性能优化,我应该说已经看了全网关于优化的文章。在实际数据体量非常大的前提下,实际效果不是太明显。
        其中比较好的有这几篇文章。
es官方博文
Improving the performance of high-cardinality terms aggregations in Elasticsearch | Elastic Blog
Elasticsearch 聚合性能优化六大猛招-腾讯云开发者社区-腾讯云
Elasticsearch聚合优化 | 聚合速度提升5倍_es聚合速度-CSDN博客

es agg,ES搜索优化,Elasticsearch,elasticsearch,agg聚合性能提升,性能提升,抽样性能提升对比,es聚合抽样方案

抽样聚合方案

1.es原生抽样聚合

官方提供的采样聚合

参考文档:Sampler aggregation | Elasticsearch Guide [7.11] | Elastic

        ES中的抽样聚合,意思是只对高质量的数据做聚合。比如,指定搜索条件,该搜索条件命中的数据为100W,对这100W数据,根据相关性分数排序。然后对这topK的数据做聚,比如每个shard上取200条评分最高的数据,去聚合。这就是ES sampler aggregation的含义。

2.es pre-filter机制

参考文档:Elasticsearch的search之_shards skipped之谜_布道的博客-CSDN博客__shards skipped

3.es在检索过程中指定分片

GET index_name/_search?preference=_shards:0

        抽样抽分片的思路,只每次固定只检测其中一个分片。例如我们的索引一共300G,每个分片30G,一共有10个分片。在检索的过程中,只对其中一个分片做检索和聚合。其最终的聚合结果,根据我们的测试来看,效果还是非常不错的。聚合结果的分布情况和本来的terms聚合相差不大。性能也能提升个几倍。注意这种方式,聚合结果是近似的,并不是完全准确的(ES本身的聚合解结果就不是100%精准的)。

        在大数据随机分布的情况下。在搜索命中大量数据情况下,其结果分布也是满足正态分布的。注意在搜索结果命中的结果集越多,其结果越符合正态分布,其聚合结果越接近标准值(原生terms聚合)。这里有一个值,一个经验值,在搜索提交条件命中大于10000的时候,可以用抽样,结果偏差不大。

        注意,这里具体抽哪一个分片是有说法的。我们要考虑一个问题,同一个搜索条件,聚合结果应该是一致的。这里可以将搜索条件进行md5,然后取hash值,然后将hash值模上分片总数。这里只是一个思路。

ES官方的抽样聚合说明

抽样方案对比测试

对比测试了三种聚合分析的方式,其中包含了termssampler terms、和shard抽样(假如有10个shard,只对其中一个shard做搜索)

先说测试结论

官方的抽样,召回的结果和标准结果偏差较大。

官方的抽样,时间花费上,并没有太大的提升。

抽取分片,召回的结果和标准结果偏差不大。

抽取分片,时间花费上,性能提升3-5倍。资源花费为分片总数分之一。

响应时间对比如下

检索范围

检索条件

查询语法

响应时间

备注

major_index_202303

北京 AND 暴雨

terms

4561

7694

shard抽样

1423

2785

效果最好

terms sampler

5650

3663

效果没有太明显

召回结果对比如下

关键词

terms(结果)

抽取一个分片

sampler terms(抽样200)

备注

地区

4224

446

2094

中国

3772

375

-

发展

3605

342

-

天气

3503

378

1942

部分

2781

294

1525

大雨

2395

236

-

暴雨

2394

264

2454

气温

2079

212

915

局地

1851

199

1055

工作

1741

187

-

降雨

-

-

1111

北京

-

-

827

巴西

-

-

801

灾害

-

-

801

检索语句

 这里使用的是query_string 检索语法。对比标准的terms聚合,官方的simple抽样,和抽分片。

  "query": {
    "query_string": {
      "query": """北京 AND 暴雨""",
      "fields": [
        "content^1.0",
        "title^1.0"
      ],
      "type": "phrase",
      "tie_breaker": 1,
      "default_operator": "and",
      "max_determinized_states": 10000,
      "enable_position_increments": true,
      "fuzziness": "AUTO",
      "fuzzy_prefix_length": 0,
      "fuzzy_max_expansions": 50,
      "phrase_slop": 0,
      "escape": false,
      "auto_generate_synonyms_phrase_query": true,
      "fuzzy_transpositions": true,
      "boost": 1
    }
  }

全部测试结果原始数据

搜索范围

搜索条件

聚合方式

耗时情况ms

返回结果 

major_info_202303

北京 AND 暴雨

terms

4561

7694

[

        {

          "key" : "地区",

          "doc_count" : 4224

        },

        {

          "key" : "中国",

          "doc_count" : 3772

        },

        {

          "key" : "发展",

          "doc_count" : 3605

        },

        {

          "key" : "天气",

          "doc_count" : 3503

        },

        {

          "key" : "部分",

          "doc_count" : 2781

        },

        {

          "key" : "大雨",

          "doc_count" : 2395

        },

        {

          "key" : "暴雨",

          "doc_count" : 2394

        },

        {

          "key" : "气温",

          "doc_count" : 2079

        },

        {

          "key" : "局地",

          "doc_count" : 1851

        },

        {

          "key" : "工作",

          "doc_count" : 1741

        }

      ]文章来源地址https://www.toymoban.com/news/detail-762692.html

terms

sampler

5650

3663

[

          {

            "key" : "暴雨",

            "doc_count" : 2454

          },

          {

            "key" : "地区",

            "doc_count" : 2094

          },

          {

            "key" : "天气",

            "doc_count" : 1942

          },

          {

            "key" : "部分",

            "doc_count" : 1525

          },

          {

            "key" : "降雨",

            "doc_count" : 1111

          },

          {

            "key" : "局地",

            "doc_count" : 1055

          },

          {

            "key" : "气温",

            "doc_count" : 915

          },

          {

            "key" : "北京",

            "doc_count" : 827

          },

          {

            "key" : "巴西",

            "doc_count" : 801

          },

          {

            "key" : "灾害",

            "doc_count" : 801

          }

        ]

terms

+

指定shard

1423

2785

[

        {

          "key" : "地区",

          "doc_count" : 446

        },

        {

          "key" : "天气",

          "doc_count" : 378

        },

        {

          "key" : "中国",

          "doc_count" : 375

        },

        {

          "key" : "发展",

          "doc_count" : 342

        },

        {

          "key" : "部分",

          "doc_count" : 294

        },

        {

          "key" : "暴雨",

          "doc_count" : 264

        },

        {

          "key" : "大雨",

          "doc_count" : 236

        },

        {

          "key" : "气温",

          "doc_count" : 212

        },

        {

          "key" : "局地",

          "doc_count" : 199

        },

        {

          "key" : "工作",

          "doc_count" : 187

        }

      ]

到了这里,关于ES通过抽样agg聚合性能提升3-5倍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ES实战--性能提升

    触发冲刷的条件: 1.内存缓冲区已满 2.自上次冲刷后超过了一定时间 3.事务日志达到了一定阀值 对名为get-together的Elasticsearch索引执行优化操作,将索引中的数据段(segments)合并到指定的数量1

    2024年02月19日
    浏览(43)
  • SpringCloud分布式搜索引擎、数据聚合、ES和MQ的结合使用、ES集群的问题

    目录 数据聚合 聚合的分类 ​编辑 DSL实现Bucket聚合 ​编辑  DSL实现Metrics聚合​编辑 RestAPI实现聚合  对接前端接口​编辑  自定义分词器​编辑 Completion suggester查询 Completion suggester查询 酒店数据自动补全 实现酒店搜索框界面输入框的自动补全  数据同步问题分析​编辑 同

    2024年02月16日
    浏览(50)
  • ES慢查询分析——性能提升6 倍

            生产环境频繁报警。查询跨度91天的数据,请求耗时已经来到了30+s。报警的阈值为5s。我们期望值是5s内,大于该阈值的请求,我们认为是慢查询。这些慢查询,最终排查,是因为走到了历史集群上。受到了数据迁移的一定影响,也做了一些优化,最终从30s提升到5s。

    2024年02月04日
    浏览(49)
  • ES 8.x 向量检索性能测试 & 把向量检索性能提升100倍!

      向量检索不仅在的跨模态检索场景中应用广泛,随着chat gpt的火热,es的向量检索,在Ai领域发挥着越来越大的作用。   本文,主要测试es的向量检索性能。我从8.x就开始关注ES的向量检索了。当前ES已经发布到 8.10 版本。以下是官方文档的链接:    https://www.elastic.co/guide/

    2024年02月07日
    浏览(49)
  • 【金仓数据库】kingbase ES性能提升之传输压缩

    数据库应用场景复杂且多样,本文介绍金仓数据库在网络条件较差(小于10MB/s)场景,提供传输压缩特性进行性能提升。 当应用需要并发查询大量结果集时,容易出现网络资源争用问题。造成服务端CPU空闲而网络繁忙的状况,因为大结果集需要占用非常多的网络带宽,从而导

    2023年04月11日
    浏览(52)
  • ES forceMerge 强制段合并为什么会提升检索性能?

      根据以前的测试,forceMerge段合并,将段的个数合并成一个。带来了将近一倍的性能提升,测试过程文档(请参考我的另外一篇文章):ES优化实战- forceMerge搜索提升测试报告_es forcemerge_水的精神的博客-CSDN博客   注意,这次测试,只是这对一个长文本字段(就像一篇文章)

    2024年02月04日
    浏览(44)
  • elastic search es 分组统计 aggs 次数用法

    参考链接:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html es 各个版本的语法可能会不一样,如果大家在用的时候发现语法报错了,请查阅相关版本的语法。 刚需要按 ip 地址统计某个接口的访问次数,查了下 es 分组统计次数 aggs 的用法,特此记录一下,方

    2024年02月11日
    浏览(58)
  • 通过java代码实现ES中的常用搜索

    目录 测试环境准备 在指定索引下搜索全部(可以指定字段) 通过ids进行搜索 对搜索结果进行分页 match分词搜索 不分词模糊搜索:wildcardQuery与matchPhraseQuery term 搜索(精确匹配) multi_match搜索 bool搜索 多条件匹配 filter过滤搜索 sort排序搜索 后续待补充:queryStringQuery,minimu

    2024年01月18日
    浏览(44)
  • 得物社区亿级ES数据搜索性能调优实践

    2020年以来内容标注结果搜索就是社区中后台业务的核心高频使用场景之一,为了支撑复杂的后台搜索,我们将社区内容的关键信息额外存了一份到Elasticsearch中作为二级索引使用。随着标注业务的细分、迭代和时间的推移,这个索引的文档数和搜索的RT开始逐步上升。 下面是

    2024年02月05日
    浏览(53)
  • Elasticsearch专栏-8.es读写性能及优化

    服务器资源 资源 数值 服务器 华为 系统 centos7.9 cpu Intel® Core™ i5-10500 CPU @ 3.10GHz、6核12线程 mem 62G disk 机械硬盘、3.6T 单机写入性能 将es堆内存增大到20G,其余配置不做任何修改,数据单条写入。测试结果如下 线程 线程延迟时间(ms) 数据量(W) 平均响应时间(ms) QPS 300 0 5.9 338

    2023年04月12日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包