【离散数学】九章:关系 - 关系及其性质

这篇具有很好参考价值的文章主要介绍了【离散数学】九章:关系 - 关系及其性质。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

9.1关系及其性质

1、二元关系

设A和B是集合,一个从 A 到 B 的二元关系是A×B的子集。 (序偶集合的子集)

🐳换句话说,一个从A到B的二元关系是集合R,其中每个有序对的第一个元素取自A而第二个元素取自B。

我们使用记号 aRb表示(a, b)∈R,aR b表示(a, b)∉R。当(a, b)属于R时,称a与b有关系R

📘例:设 A = { 0, 1, 2 }, B = { a, b }

{ (0, a), (0, b), (1, a), (2, b) }是一个从 A 到 B 的关系。
我们可以用图或表格来表示从集合 A 到集合 B 的关系:
离散数学 antisymmetry,离散数学,算法,离散数学,关系

2、集合A上的关系

集合A上的关系是从A到A的关系。

🐳换句话说,集合A上的关系是从A到A的关系

📘例:设 A = { a, b, c }
那么R = { (a, a), (a, b), (a, c) }是 A 上的关系

3、n元素集合 有多少个关系?

A上的关系和 A × A 的子集是一回事
➡所以可以直接计数 A × A 的子集。

因为当 A 是 n 元素集合时 A × A 有 n2元素,所以 A × A 的子集有 2m (m = n2)

📘例:设 B = { b }
那么B上的二元关系共有2个:R1 = ∅,R2 = { (b, b) }

📘例:设 C = { a, b, c }
那么C上的二元关系共有29 = 512个

4、关系的性质

1. 自反(Reflexivity)

若对每个元素a∈A有(a,a)∈R,那么定义在集合A上的关系R称为自反的 记作aRa,a是A中任意一个元素

用符号表示:(集合A上的关系)R 是自反的,当且仅当 ∀x(x∈A⟶ (x, x)∈R )

(这里的论域是A中所有元素的集合。)

📘例:
以下关于整数的关系是自反的:
R1 = { (a, b) | a ≤ b },
R3 = { (a, b) | a = b 或 a = – b },
R4 = { (a, b) | a = b }。

以下关系不是自反的:
R2 = { (a, b) | a > b }(注意3 ≯ 3),
R5 = { (a, b) | a = b + 1 }(注意3 ≠ 3 + 1),
R6 = { (a, b) | a + b ≤ 3 }(注意4 + 4 ≰ 3)。

2. 对称(Symmetry)

对于任意 a, b∈A,若只要 (a, b)∈R 就有 (b, a)∈R,则称定义在集合 A 上的关系 R 为对称的。

用符号表示:R 是对称的,当且仅当 ∀x∀y ( (x, y)∈R ⟶ (y, x)∈R )

📘例:
以下关于整数的关系是对称的:
R3 = { (a, b) | a = b 或 a = – b },
R4 = { (a, b) | a = b },
R6 = { (a, b) | a + b ≤ 3 }。

以下不是对称的:
R1 = { (a, b) | a ≤ b }(反例:3 ≤ 4,但4 ≰ 3),
R2 = { (a, b) | a > b }(反例:4 > 3,但 3 ≯ 4),
R5 = { (a, b) | a = b + 1 }(反例:4 = 3 + 1,但3 ≠ 4 + 1)。

3. 反对称(Antisymmetry)

对于任意 a, b∈A,若 (a, b)∈R 且 (b, a)∈R,一定有 a = b,则称定义在集合 A 上的关系 R 为反对称的。

用符号表示:R 是反对称的,当且仅当 ∀x∀y( (x, y)∈R ∧ (y, x)∈R ⟶ x = y )

📘例:
以下关于整数的关系是反对称的:
R1 = { (a, b) | a ≤ b },
R2 = { (a, b) | a > b },
R4 = { (a, b) | a = b },
R5 = { (a, b) | a = b + 1 }。

以下关系不是反对称的:
R3 = { (a, b) | a = b 或 a = – b }(反例: (1, – 1) 和 (–1, 1) 都属于R3),
R6 = { (a, b) | a + b ≤ 3 }(反例: (1, 2) 和 (2, 1) 都属于R6)。

💻对称与反对称的概念不是对立的,因为一个关系可以同时有这两种性质或者两种性质都没有。
一个关系如果包含了某些形如(a,b)的有序对,其中a≠b,则这个关系就不可能同时是对称的和反对称的。

4. 传递(Transitivity)

若对于任意 a, b, c∈A,(a, b)∈R 并且 (b, c)∈R 则 (a, c)∈R,那么定义在集合 A 上的关系 R 称为传递的。

用符号表示:R 是传递的,当且仅当∀x∀y∀z( (x, y)∈R ∧ (y, z)∈R ⟶ (x, z)∈R)

📘例:
以下关于整数的关系是可传递的:
R1 = { (a, b) | a ≤ b },
R2 = { (a, b) | a > b },
R3 = { (a, b) | a = b 或 a = – b },
R4 = { (a, b) | a = b }。

下面的句子不是可传递的:
R5 = { (a, b) | a = b + 1 }
(反例:(3, 2) 和 (4, 3) 都属于R5,但不属于 (3, 3)),
R6 = { (a, b) | a + b ≤ 3 }
(反例:(2, 1) 和 (1, 2) 都属于R6,但不属于 (2, 2))。

5、关系的组合

因为从A到B的关系是 A×B 的子集,所以可以按照两个集合组合的任何方式来组合两个从A到B的关系。

给定两个关系R1和R2,我们可以使用基本的集合操作将它们组合起来,形成新的关系,如 R1 ∪ R2、R1 ∩ R2、R1 − R2 和 R2 − R1

除了常见的并∪、交∩、差 - 、异或⊕,还有一种新的组合方式:

关系的合成

设R1 是集合 A 到集合 B 的关系,R2 是集合 B 到集合 C 的关系。
R2 和 R1 的合成是 A 到 C 的关系,其中如果 (x, y) 是 R1 的成员,(y, z) 是 R2的成员,那么 (x, z) 则是 R1 ∘ R2 的成员。

(R1 ∘ R2 表示R1 和 R2 的合成)

关系的幂

由两个关系合成的定义可以递归定义关系R的幂

设R为A上的二元关系,则关系R的n次幂Rn可归纳定义为:
基础步骤:R1 = R
归纳步骤:Rn+1 = Rn ∘ R

传递关系的幂是该关系的子集
离散数学 antisymmetry,离散数学,算法,离散数学,关系文章来源地址https://www.toymoban.com/news/detail-762935.html

到了这里,关于【离散数学】九章:关系 - 关系及其性质的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 离散数学(十二):关系的幂运算与关系的性质

    1)幂运算的定义  2)幂运算的求法   幂运算有两种求法,基于矩阵的方法和基于关系图的方法。我们之前学过关系的表示方法有三种:集合、矩阵、关系图。那么同样,这些方式也可以运用于关系的计算中。 需要的注意的是,基于关系图的运算是具有物理意义的,以R2为例

    2024年02月08日
    浏览(43)
  • 【离散数学】Python语言实现关系性质的判断

    实验内容: 用矩阵表示二元关系;通过矩阵的特征判断二元关系所具有的性质;运用二维数组实现矩阵的输入,然后判断自反性,反自反性,对称性,反对称性,传递性 先复习一下相关的基础知识:  1.    判断自反性:矩阵主对角线元素全为1 2.    判断反自反性:矩阵主

    2024年02月04日
    浏览(42)
  • 【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(1,二维连续型和离散型随机变量基本概念与性质)

    隔了好长时间没看概率论了,上一篇文章还是 8.29 ,快一个月了。主要是想着高数做到多元微分和二重积分题目,再来看这个概率论二维的来,更好理解。不过没想到内容太多了,到现在也只到二元微分的进度。 定义 1 —— 二维随机变量。设 X , Y X,Y X , Y 为定义于同一样本空

    2024年02月07日
    浏览(51)
  • 《离散数学及其应用(原书第8版)》ISBN978-7-111-63687-8 第11章 11.1.3 树的性质 节 第664页的例9说明

    《离散数学及其应用(原书第8版)》ISBN978-7-111-63687-8 第11章 11.1.3 树的性质 节 第664页的定理3的引申 定理3 带有i个内点的m叉树含有n=mi+1个顶点 见本人博文 内点定义不同的讨论 如果对于一个m叉正则树,即任意分支节点的儿子恰好有m个,公式该如何表述。 下图绘制了一个5叉

    2024年02月12日
    浏览(43)
  • 关系的基本概念及其性质

    二元关系: 定义: 设A和B是两个集合,A×B的任一子集R称为从A到B的一个二元关系。 如果(a,b)∈R,则a与b符合关系R,记为aRb;  如果(a,b) R,则a与b不符合关系R,记为aRb。 如果A=B,则称R为A上的二元关系。 性质:  若|A|=m,|B|=n,则|A×B|=m×n,A×B共有2m×n个子集,所以从A到B的二

    2024年02月04日
    浏览(73)
  • 离散数学 --- 二元关系 --- 关系的运算

      进行关系A和关系B进行关系的复合运算的前提是关系A的后域是关系B的前域,且最终得到的复合关系C的前域是关系A的前域,后域是关系B的后域(且这个前域值在关系A中对应的后域值与这个后域值在关系B中对应的前域值相等) 1.关系的复合运算必然涉及到三个集合,两个集

    2024年02月02日
    浏览(47)
  • 离散数学之矩阵关系运算

    矩阵关系运算前提: (1)第一个矩阵的列数等于第二个矩阵的行数。 (2)两个矩阵的元素均是0或1。 例如:A关系运算B得到C   原理:C11=(A11∧B11)∨(A12∧B21) C12=(A11∧B12)∨(A12∧B22)...... 就是把矩阵乘法中各个元素的乘法变成合取,原来乘法之后进行的相加改为合取后的析取。    

    2024年02月12日
    浏览(42)
  • 【Educoder离散数学实训】关系基础

    题有点多,能聊的不多。有些题还是比较有价值的 就单独说几个题,代码放在最后。所有函数都改成自己写的了,没准比答案给的好读一点? T1 求给定集合的对角线关系(diagonal relation) 我觉得如果卡住的话,第一关会是一个大坎。 因为我们并不知道他到底在说啥,于是我

    2024年02月07日
    浏览(52)
  • 离散数学 --- 特殊关系 --- 偏序关系,哈斯图和特殊元素以及其它次序关系

    1.当我们用 ≤ 符号来表示偏序关系的时候,这个符号就不再局限于它本来的含义了,此时的它表示的是元素之间的先后顺序,如下图:   1.这里的可比的意思是可比较元素在偏序关系中的先后顺序   1.哈斯图其实就是简化版的偏序关系的关系图 2.什么叫做由于传递关系必须出

    2024年01月15日
    浏览(40)
  • 【Java实现】离散数学计算 关系的幂运算

    (前排提示,代码内容在文章中间,末尾是闲聊)  离散数学在在“右复合”的基础上提出了“幂运算”的概念。 设R为A上的关系,n为自然数,则R的n次幂如下: (1)为恒等关系。 (2) =o。  咳咳,用上面两个定义可以干很多事情,比如我们知道任意集合上关系的0次幂都

    2024年02月11日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包