基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化

这篇具有很好参考价值的文章主要介绍了基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

22:FineBI配置数据集

  • 目标实现FineBI访问MySQL结果数据集的配置

  • 实施

    • 安装FineBI

      • 参考《FineBI Windows版本安装手册.docx》安装FineBI

        finebi kafka,# Flink,flume,kafka,hbase

    • 配置连接

      finebi kafka,# Flink,flume,kafka,hbase

      finebi kafka,# Flink,flume,kafka,hbase

      finebi kafka,# Flink,flume,kafka,hbase

      数据连接名称:Momo
      用户名:root
      密码:自己MySQL的密码
      数据连接URL:jdbc:mysql://node1:3306/momo?useUnicode=true&characterEncoding=utf8
      

      finebi kafka,# Flink,flume,kafka,hbase

      finebi kafka,# Flink,flume,kafka,hbase

    • 数据准备

      finebi kafka,# Flink,flume,kafka,hbase

      finebi kafka,# Flink,flume,kafka,hbase

      finebi kafka,# Flink,flume,kafka,hbase

      SELECT  
       id, momo_totalcount,momo_province,momo_username,momo_msgcount,
       CASE momo_grouptype WHEN '1' THEN '总消息量' WHEN '2' THEN '各省份发送量'  WHEN '3' THEN '各省份接收量'
      	WHEN '4' THEN '各用户发送量' WHEN '5' THEN '各用户接收量' END AS momo_grouptype
      FROM  momo_count
      
  • 小结

    • 实现FineBI访问MySQL结果数据集的配置

23:FineBI构建报表

  • 目标实现FineBI实时报表构建

  • 路径

    • step1:实时报表构建
    • step2:实时报表配置
    • step3:实时刷新测试
  • 实施

    • 实时报表构建

      • 新建仪表盘

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

      • 添加标题

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

      • 实时总消息数

        finebi kafka,# Flink,flume,kafka,hbase

      • 发送消息最多的Top10用户

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

      • 接受消息最多的Top10用户

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

      • 各省份发送消息Top10

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

      • 各省份接收消息Top10

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

        finebi kafka,# Flink,flume,kafka,hbase

      • 各省份总消息量

        finebi kafka,# Flink,flume,kafka,hbase

  • 小结

    • 实现FineBI实时报表构建

24:FineBI实时配置测试

  • 目标:实现实时报表测试

  • 实施

    • 实时报表配置

      • 官方文档:https://help.fanruan.com/finebi/doc-view-363.html

      • 添加jar包:将jar包放入FineBI安装目录的 webapps\webroot\WEB-INF\lib目录下

        finebi kafka,# Flink,flume,kafka,hbase

        • 注意:如果提示已存在,就选择覆盖
      • 添加JS文件

        • 创建js文件:refresh.js

          setTimeout(function () {
           var b =document.title;
           var a =BI.designConfigure.reportId;//获取仪表板id
           //这里要指定自己仪表盘的id
           if (a=="d574631848bd4e33acae54f986d34e69") {
            setInterval(function () {
             BI.SharingPool.put("controlFilters", BI.Utils.getControlCalculations());
             //Data.SharingPool.put("controlFilters", BI.Utils.getControlCalculations());
             BI.Utils.broadcastAllWidgets2Refresh(true);
            }, 3000);//5000000为定时刷新的频率,单位ms
           }
          }, 2000)
          
        • 将创建好的refresh.js文件放至 FineBI 安装目录%FineBI%/webapps/webroot中

          finebi kafka,# Flink,flume,kafka,hbase

        • 关闭FineBI缓存,然后关闭FineBI

          finebi kafka,# Flink,flume,kafka,hbase

        • 修改jar包,添加js

          finebi kafka,# Flink,flume,kafka,hbase

          finebi kafka,# Flink,flume,kafka,hbase

          finebi kafka,# Flink,flume,kafka,hbase

          finebi kafka,# Flink,flume,kafka,hbase

          <!-- 增加刷新功能 --> 
          <script type="text/javascript" src="/webroot/refresh.js"></script>
          
        
        
      • 重启FineBI

  • 实时刷新测试

    • 清空MySQL结果表

    • 启动Flink程序:运行MoMoFlinkCount

    • 启动Flume程序

      cd /export/server/flume-1.9.0-bin
      bin/flume-ng agent -c conf/ -n a1 -f usercase/momo_mem_kafka.properties -Dflume.root.logger=INFO,console
      
    • 启动模拟数据

      java -jar /export/data/momo_init/MoMo_DataGen.jar \
      /export/data/momo_init/MoMo_Data.xlsx \
      /export/data/momo_data/ \
      10
      
      
    - 观察报表
    
    
  • 小结文章来源地址https://www.toymoban.com/news/detail-763156.html

    • 实现FineBI实时测试




## 附录一:Maven依赖

​```xml
  <!--远程仓库-->
  <repositories>
      <repository>
          <id>aliyun</id>
          <url>http://maven.aliyun.com/nexus/content/groups/public/</url>
          <releases><enabled>true</enabled></releases>
          <snapshots>
              <enabled>false</enabled>
              <updatePolicy>never</updatePolicy>
          </snapshots>
      </repository>
  </repositories>
  <dependencies>
      <!--Hbase 客户端-->
      <dependency>
          <groupId>org.apache.hbase</groupId>
          <artifactId>hbase-client</artifactId>
          <version>2.1.0</version>
      </dependency>
      <!--kafka 客户端-->
      <dependency>
          <groupId>org.apache.kafka</groupId>
          <artifactId>kafka-clients</artifactId>
          <version>2.4.1</version>
      </dependency>
      <!--JSON解析工具包-->
      <dependency>
          <groupId>com.alibaba</groupId>
          <artifactId>fastjson</artifactId>
          <version>1.2.62</version>
      </dependency>
      <!--Flink依赖-->
      <dependency>
          <groupId>org.apache.flink</groupId>
          <artifactId>flink-java</artifactId>
          <version>1.10.0</version>
      </dependency>
      <dependency>
          <groupId>org.apache.flink</groupId>
          <artifactId>flink-streaming-java_2.11</artifactId>
          <version>1.10.0</version>
      </dependency>
      <dependency>
          <groupId>org.apache.flink</groupId>
          <artifactId>flink-runtime-web_2.11</artifactId>
          <version>1.10.0</version>
      </dependency>
      <!-- flink操作hdfs、Kafka、MySQL、Redis,所需要导入该包-->
      <dependency>
          <groupId>org.apache.flink</groupId>
          <artifactId>flink-shaded-hadoop-2-uber</artifactId>
          <version>2.7.5-10.0</version>
      </dependency>
      <dependency>
          <groupId>org.apache.flink</groupId>
          <artifactId>flink-connector-kafka_2.11</artifactId>
          <version>1.10.0</version>
      </dependency>
      <dependency>
          <groupId>org.apache.flink</groupId>
          <artifactId>flink-jdbc_2.11</artifactId>
          <version>1.10.0</version>
      </dependency>
      <dependency>
          <groupId>org.apache.bahir</groupId>
          <artifactId>flink-connector-redis_2.11</artifactId>
          <version>1.0</version>
      </dependency>
      <!--HTTP请求的的依赖-->
      <dependency>
          <groupId>org.apache.httpcomponents</groupId>
          <artifactId>httpclient</artifactId>
          <version>4.5.4</version>
      </dependency>
      <!--MySQL连接驱动-->
      <dependency>
          <groupId>mysql</groupId>
          <artifactId>mysql-connector-java</artifactId>
          <version>5.1.38</version>
      </dependency>
  </dependencies>

  <build>
      <plugins>
          <plugin>
              <groupId>org.apache.maven.plugins</groupId>
              <artifactId>maven-compiler-plugin</artifactId>
              <version>3.1</version>
              <configuration>
                  <target>1.8</target>
                  <source>1.8</source>
              </configuration>
          </plugin>
      </plugins>
  </build>

附录二:离线消费者完整代码

package bigdata.itcast.cn.momo.offline;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.hbase.util.MD5Hash;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;

import java.io.IOException;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.Duration;
import java.util.*;

/**
 * @ClassName MomoKafkaToHbase
 * @Description TODO 离线场景:消费Kafka的数据写入Hbase
 * @Create By     Maynor
 */
public class MomoKafkaToHbase {

    private  static SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
    private static Connection conn;
    private static Table table;
    private static TableName tableName = TableName.valueOf("MOMO_CHAT:MOMO_MSG");//表名
    private static byte[] family = Bytes.toBytes("C1");//列族

    //todo:2-构建Hbase连接
    //静态代码块: 随着类的加载而加载,一般只会加载一次,避免构建多个连接影响性能
    static{
        try {
            //构建配置对象
            Configuration conf = HBaseConfiguration.create();
            conf.set("hbase.zookeeper.quorum","node1:2181,node2:2181,node3:2181");
            //构建连接
            conn = ConnectionFactory.createConnection(conf);
            //获取表对象
            table = conn.getTable(tableName);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }


    public static void main(String[] args) throws Exception {
        //todo:1-构建消费者,获取数据
        consumerKafkaToHbase();
//        String momoRowkey = getMomoRowkey("2020-08-13 12:30:00", "13071949728", "17719988692");
//        System.out.println(momoRowkey);
    }

    /**
     * 用于消费Kafka的数据,将合法数据写入Hbase
     */
    private static void consumerKafkaToHbase() throws Exception {
        //构建配置对象
        Properties props = new Properties();
        //指定服务端地址
        props.setProperty("bootstrap.servers", "node1:9092,node2:9092,node3:9092");
        //指定消费者组的id
        props.setProperty("group.id", "momo1");
        //关闭自动提交
        props.setProperty("enable.auto.commit", "false");
        //指定K和V反序列化的类型
        props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        //构建消费者的连接
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        //指定订阅哪些Topic
        consumer.subscribe(Arrays.asList("MOMO_MSG"));
        //持续拉取数据
        while (true) {
            //向Kafka请求拉取数据,等待Kafka响应,在100ms以内如果响应,就拉取数据,如果100ms内没有响应,就提交下一次请求: 100ms为等待Kafka响应时间
            //拉取到的所有数据:多条KV数据都在ConsumerRecords对象,类似于一个集合
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            //todo:3-处理拉取到的数据:打印
            //取出每个分区的数据进行处理
            Set<TopicPartition> partitions = records.partitions();//获取本次数据中所有分区
            //对每个分区的数据做处理
            for (TopicPartition partition : partitions) {
                List<ConsumerRecord<String, String>> partRecords = records.records(partition);//取出这个分区的所有数据
                //处理这个分区的数据
                long offset = 0;
                for (ConsumerRecord<String, String> record : partRecords) {
                    //获取Topic
                    String topic = record.topic();
                    //获取分区
                    int part = record.partition();
                    //获取offset
                    offset = record.offset();
                    //获取Key
                    String key = record.key();
                    //获取Value
                    String value = record.value();
                    System.out.println(topic + "\t" + part + "\t" + offset + "\t" + key + "\t" + value);
                    //将Value数据写入Hbase
                    if(value != null && !"".equals(value) && value.split("\001").length == 20 ){
                        writeToHbase(value);
                    }
                }
                //手动提交分区的commit offset
                Map<TopicPartition, OffsetAndMetadata> offsets = Collections.singletonMap(partition,new OffsetAndMetadata(offset+1));
                consumer.commitSync(offsets);
            }
        }
    }

    /**
     * 用于实现具体的写入Hbase的方法
     * @param value
     */
    private static void writeToHbase(String value) throws Exception {
        //todo:3-写入Hbase
        //切分数据
        String[] items = value.split("\001");
        String stime = items[0];
        String sender_accounter = items[2];
        String receiver_accounter = items[11];
        //构建rowkey
        String rowkey = getMomoRowkey(stime,sender_accounter,receiver_accounter);
        //构建Put
        Put put = new Put(Bytes.toBytes(rowkey));
        //添加列
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("msg_time"),Bytes.toBytes(items[0]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_nickyname"),Bytes.toBytes(items[1]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_account"),Bytes.toBytes(items[2]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_sex"),Bytes.toBytes(items[3]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_ip"),Bytes.toBytes(items[4]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_os"),Bytes.toBytes(items[5]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_phone_type"),Bytes.toBytes(items[6]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_network"),Bytes.toBytes(items[7]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("sender_gps"),Bytes.toBytes(items[8]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_nickyname"),Bytes.toBytes(items[9]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_ip"),Bytes.toBytes(items[10]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_account"),Bytes.toBytes(items[11]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_os"),Bytes.toBytes(items[12]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_phone_type"),Bytes.toBytes(items[13]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_network"),Bytes.toBytes(items[14]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_gps"),Bytes.toBytes(items[15]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("receiver_sex"),Bytes.toBytes(items[16]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("msg_type"),Bytes.toBytes(items[17]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("distance"),Bytes.toBytes(items[18]));
        put.addColumn(Bytes.toBytes("C1"),Bytes.toBytes("message"),Bytes.toBytes(items[19]));
        //执行写入
        table.put(put);
    }

    /**
     * 基于消息时间、发送人id、接受人id构建rowkey
     * @param stime
     * @param sender_accounter
     * @param receiver_accounter
     * @return
     * @throws Exception
     */
    private static String getMomoRowkey(String stime, String sender_accounter, String receiver_accounter) throws Exception {
        //转换时间戳
        long time = format.parse(stime).getTime();
        String suffix = sender_accounter+"_"+receiver_accounter+"_"+time;
        //构建MD5
        String prefix = MD5Hash.getMD5AsHex(Bytes.toBytes(suffix)).substring(0,8);
        //合并返回
        return prefix+"_"+suffix;
    }
}

到了这里,关于基于Flume+Kafka+Hbase+Flink+FineBI的实时综合案例(五)FineBI可视化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 在hadoop或docker环境下基于kafka和flink的实时计算大屏展示

    第一章 总体需求 1.1.课题背景 某股票交易机构已上线一个在线交易平台,平台注册用户量近千万,每日均 接受来自全国各地的分支机构用户提交的交易请求。鉴于公司发展及平台管理要 求,拟委托开发一个在线实时大数据系统,可实时观测股票交易大数据信息,展 示部分重

    2024年02月03日
    浏览(41)
  • 【flume实时采集mysql数据库的数据到kafka】

    最近做了flume实时采集mysql数据到kafka的实验,做个笔记,防止忘记 !!!建议从头看到尾,因为一些简单的东西我在前面提了,后面没提。 Kafka搭建:https://blog.csdn.net/cjwfinal/article/details/120803013 flume搭建:https://blog.csdn.net/cjwfinal/article/details/120441503?spm=1001.2014.3001.5502 编写配置

    2024年02月03日
    浏览(60)
  • 基于华为MRS实时消费Kafka通过Flink落盘至HDFS的Hive外部表的调度方案

    该需求为实时接收对手Topic,并进行消费落盘至Hive。 在具体的实施中,基于华为MRS 3.2.0安全模式带kerberos认证的Kafka2.4、Flink1.15、Hadoop3.3.1、Hive3.1,调度平台为开源dolphinscheduler。 本需求的完成全部参考华为官方MRS3.2.0开发文档,相关章节是普通版的安全模式。 华为官方文档:

    2024年01月18日
    浏览(46)
  • 【Kafka+Flume+Mysql+Spark】实现新闻话题实时统计分析系统(附源码)

    需要源码请点赞关注收藏后评论区留言私信~~~ 新闻话题实时统计分析系统以搜狗实验室的用户查询日志为基础,模拟生成用户查询日志,通过Flume将日志进行实时采集、汇集,分析并进行存储。利用Spark Streaming实时统计分析前20名流量最高的新闻话题,并在前端页面实时显示

    2024年02月06日
    浏览(52)
  • 【大数据技术】Spark+Flume+Kafka实现商品实时交易数据统计分析实战(附源码)

    需要源码请点赞关注收藏后评论区留言私信~~~ 1)Kafka 是一个非常通用的系统,你可以有许多生产者和消费者共享多个主题Topics。相比之下,Flume是一个专用工具被设计为旨在往HDFS,HBase等发送数据。它对HDFS有特殊的优化,并且集成了Hadoop的安全特性。如果数据被多个系统消

    2024年02月03日
    浏览(52)
  • 基于华为MRS3.2.0实时Flink消费Kafka落盘至HDFS的Hive外部表的调度方案

    该需求为实时接收对手Topic,并进行消费落盘至Hive。 在具体的实施中,基于华为MRS 3.2.0安全模式带kerberos认证的Kafka2.4、Flink1.15、Hadoop3.3.1、Hive3.1,调度平台为开源dolphinscheduler。 本需求的完成全部参考华为官方MRS3.2.0开发文档,相关章节是普通版的安全模式。 华为官方文档:

    2024年01月21日
    浏览(39)
  • (二十八)大数据实战——Flume数据采集之kafka数据生产与消费集成案例

    本节内容我们主要介绍一下flume数据采集和kafka消息中间键的整合。通过flume监听nc端口的数据,将数据发送到kafka消息的first主题中,然后在通过flume消费kafka中的主题消息,将消费到的消息打印到控制台上。集成使用flume作为kafka的生产者和消费者。关于nc工具、flume以及kafka的

    2024年02月09日
    浏览(53)
  • Zookeeper+Hadoop+Spark+Flink+Kafka+Hbase+Hive

    Zookeeper+Hadoop+Spark+Flink+Kafka+Hbase+Hive 完全分布式高可用集群搭建 下载 https://archive.apache.org/dist/  Mysql下载地址 Index of /MySQL/Downloads/ 我最终选择 Zookeeper3.7.1 +Hadoop3.3.5 + Spark-3.2.4 + Flink-1.16.1 + Kafka2.12-3.4.0 + HBase2.4.17 + Hive3.1.3  +JDK1.8.0_391  IP规划 IP hostname 192.168.1.5 node1 192.168.1.6 node

    2024年01月23日
    浏览(51)
  • Flink流处理案例:实时数据聚合

    Apache Flink是一个流处理框架,可以处理大规模数据流,实现实时数据处理和分析。Flink支持各种数据源和接口,如Kafka、HDFS、TCP流等,可以实现高吞吐量、低延迟的流处理。 在本文中,我们将通过一个实际的Flink流处理案例来讲解Flink的核心概念、算法原理和最佳实践。我们将

    2024年02月19日
    浏览(46)
  • Flink CDC+Kafka 加速业务实时化

    摘要: 本文整理自阿里巴巴开发工程师,Apache Flink Committer 任庆盛,在 9 月 24 日 Apache Flink Meetup 的分享。主要内容包括: Flink CDC 技术对比与分析 Flink + Kafka 实时数据集成方案 Demo:Flink+Kafka 实现 CDC 数据的实时集成和实时分析 1.1. 变更数据捕获(CDC)技术 广义概念上,能够

    2024年02月15日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包