【数据结构和算法】寻找数组的中心下标

这篇具有很好参考价值的文章主要介绍了【数据结构和算法】寻找数组的中心下标。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

其他系列文章导航

Java基础合集
数据结构与算法合集

设计模式合集

多线程合集

分布式合集

ES合集


文章目录

其他系列文章导航

文章目录

前言

一、题目描述

二、题解

2.1 前缀和的解题模板

2.1.1 最长递增子序列长度

2.1.2 寻找数组中第 k 大的元素

2.1.3 最长公共子序列长度

2.1.4 寻找数组中第 k 小的元素

2.2 方法一:前缀和

三、代码

3.2 方法一:前缀和

四、复杂度分析

4.2 方法一:前缀和


前言

这是力扣的 724 题,难度为简单,解题方案有很多种,本文讲解我认为最奇妙的一种。

这是一道非常经典的前缀和问题,虽然看似简单,但它却能让你深入理解前缀和的特点。


一、题目描述

给你一个整数数组 nums ,请计算数组的 中心下标 

数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。

如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适用。

如果数组有多个中心下标,应该返回 最靠近左边 的那一个。如果数组不存在中心下标,返回 -1 。

示例 1:

输入:nums = [1, 7, 3, 6, 5, 6]
输出:3
解释:
中心下标是 3 。
左侧数之和 sum = nums[0] + nums[1] + nums[2] = 1 + 7 + 3 = 11 ,
右侧数之和 sum = nums[4] + nums[5] = 5 + 6 = 11 ,二者相等。

示例 2:

输入:nums = [1, 2, 3]
输出:-1
解释:
数组中不存在满足此条件的中心下标。

示例 3:

输入:nums = [2, 1, -1]
输出:0
解释:
中心下标是 0 。
左侧数之和 sum = 0 ,(下标 0 左侧不存在元素),
右侧数之和 sum = nums[1] + nums[2] = 1 + -1 = 0 。

提示:

  • 1 <= nums.length <= 104
  • -1000 <= nums[i] <= 1000

二、题解

2.1 前缀和的解题模板

前缀和算法是一种在处理数组或链表问题时常用的技巧,它可以有效地减少重复计算,提高算法的效率。下面是一些常见的使用前缀和算法的题目以及解题思路:

2.1.1 最长递增子序列长度

题目描述:给定一个无序数组,求最长递增子序列的长度。

解题思路:可以使用前缀和和单调栈来解决这个问题。首先,遍历数组,计算出前缀和。然后,使用单调栈记录当前递增子序列的起始位置。遍历数组时,如果当前元素大于前缀和,说明可以扩展当前递增子序列,将当前位置入栈。如果当前元素小于等于前缀和,说明当前递增子序列已经结束,弹出栈顶元素。最后,栈中剩余的元素即为最长递增子序列的起始位置,计算长度即可。

2.1.2 寻找数组中第 k 大的元素

题目描述:给定一个无序数组和一个整数k,找到数组中第k大的元素。

解题思路:可以使用前缀和和快速选择算法来解决这个问题。首先,计算出数组的前缀和。然后,使用快速选择算法在数组中找到第k小的元素。具体实现中,每次选择一个枢轴元素,将数组分成两部分,小于枢轴的元素和大于枢轴的元素。如果枢轴左边的元素个数小于k,则在左边的子数组中继续查找;如果枢轴左边的元素个数大于等于k,则在右边的子数组中继续查找。最后,当找到第k小的元素时,返回该元素即可。

2.1.3 最长公共子序列长度

题目描述:给定两个字符串,求最长公共子序列的长度。

解题思路:可以使用动态规划算法来解决这个问题。如果字符串长度分别为m和n,则可以定义一个二维数组dp[m+1][n+1],其中dp[i][j]表示字符串s1的前i个字符和字符串s2的前j个字符的最长公共子序列长度。根据动态规划的思想,状态转移方程为dp[i][j] = max(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])。如果s1[i-1]等于s2[j-1],则dp[i][j] = dp[i-1][j-1] + 1;否则dp[i][j]取其他两种情况中的较大值。最终结果为dp[m][n]。

2.1.4 寻找数组中第 k 小的元素

题目描述:给定一个无序数组和一个整数k,找到数组中第k小的元素。

解题思路:可以使用前缀和和快速选择算法来解决这个问题。具体实现与寻找第k大元素类似,只不过最后返回的是第k小的元素而非第k大的元素。

2.2 方法一:前缀和

题目仅说明是整数数组,无其他已知条件,因此考虑直接遍历数组。

【数据结构和算法】寻找数组的中心下标,数据结构与算法合集,数据结构,算法,策略模式,java,开发语言,动态规划,线性回归

  • 设索引 i 对应变量「左侧元素相加和 leftSum」和「右侧元素相加和 rightSum」。
  • 遍历数组 nums ,每轮更新 leftSum 和 rightSum。
  • 遍历中,遇到满足 leftSum == rightSum 时,说明当前索引为中心下标,返回即可。
  • 若遍历完成,仍未找到「中心下标」,则返回 -1 。

初始化时,相当于索引 i=−1 ,此时 leftSum = 0 , rightSum = 所有元素的和 。

需要考虑大数越界问题。题目给定整数数组 nums ,并给定取值范围。

题目的范围在 int 类型的取值范围内,因此 sum_left 和 sum_right 使用 int 类型即可。


三、代码

3.2 方法一:前缀和

Java版本:

class Solution {
    public int pivotIndex(int[] nums) {
        int leftSum = 0, rightSum = Arrays.stream(nums).sum();
        for (int i = 0; i < nums.length; i++) {
            rightSum -= nums[i];
            if (leftSum == rightSum) return i;
            leftSum += nums[i];

        }
        return -1;
    }
}

C++版本:

class Solution {
public:
    int pivotIndex(vector<int>& nums) {
        int leftSum = 0, rightSum = accumulate(nums.begin(), nums.end(), 0);
        for (int i = 0; i < nums.size(); i++) {
            rightSum -= nums[i];
            if (leftSum == rightSum) return i;
            leftSum += nums[i];
        }
        return -1;
    }
};

Python版本:

class Solution:
    def pivotIndex(self, nums: List[int]) -> int:
        left_sum, right_sum = 0, sum(nums)
        for i in range(len(nums)):
            right_sum -= nums[i]
            if left_sum == right_sum:
                return i
            left_sum += nums[i]
        return -1

Go版本:

package main

func pivotIndex(nums []int) int {
    leftSum := 0
    rightSum := 0
    for _, v := range nums {
        rightSum += v
    }

    for i, v := range nums {
        rightSum -= v
        if leftSum == rightSum {
            return i
        }
        leftSum += v
    }

    return -1
}

四、复杂度分析

4.2 方法一:前缀和

时间复杂度 O(N): 其中 N 为数组 nums 长度。求和操作使用 O(N) 线性时间,遍历 nums 最差使用 O(N) 线性时间。
空间复杂度 O(1): 变量  leftSum ,  rightSum 使用常数大小空间。文章来源地址https://www.toymoban.com/news/detail-763268.html


到了这里,关于【数据结构和算法】寻找数组的中心下标的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【C语言】每日一题(寻找数组的中心下标)

    寻找数组的中心下标,链接奉上 ​​​​​​​思路: 依旧是我们的老朋友,暴力循环。 1.可以利用外层for循环,循环变量为数组下标,在循环内分别求出下标左边与右边的sum 2.在边界时讨论, 当下标为左边界(nums[0])时,left sum=0;当下标为右边界(nums[numsSize-1)时,r

    2024年02月13日
    浏览(47)
  • 【LeetCode 75】第十九题(724)寻找数组的中心下标

    目录 题目: 示例: ​分析: 代码+运行结果: 给一个数组,让我们找出一个下标,在这个下标左边的元素总和等于这个下标右边的元素总和. 我们可以把整个数组的总和求出来,然后再从左往右遍历一次数组,遍历的同时将遍历过的数累加记录到一个变量中.若遍历到一个数,总和减去它

    2024年02月14日
    浏览(91)
  • ⭐北邮复试刷题LCR 012. 寻找数组的中心下标__前缀和思想 (力扣119经典题变种挑战)

    给你一个整数数组 nums ,请计算数组的 中心下标 。 数组 中心下标 是数组的一个下标,其左侧所有元素相加的和等于右侧所有元素相加的和。 如果中心下标位于数组最左端,那么左侧数之和视为 0 ,因为在下标的左侧不存在元素。这一点对于中心下标位于数组最右端同样适

    2024年02月20日
    浏览(49)
  • 【数据结构】三对角矩阵(带状矩阵)的压缩 数组下标转换

    王道书中给出定义如下: 书中没有给出具体的推导过程,在CSDN上也没搜到,因此我来发一篇(哈哈哈哈哈 推导过程如下: 首先除去第一行。 从第二行开始,当矩阵的下标为(i,j)的时候: 前面一定会有第一行的2个 会有从第2行开始到第i-1行的每行3个,因此是3(i-1-2+1)=3(i-2)

    2024年02月07日
    浏览(48)
  • java数据结构与算法刷题-----LeetCode287. 寻找重复数

    java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完): https://blog.csdn.net/grd_java/article/details/123063846 解题思路 弗洛伊德判圈法,也就是快慢指针判圈法(龟兔赛跑算法),此算法分为两个步骤 判断是否有环,并得到快慢指针相遇

    2024年01月24日
    浏览(42)
  • 【算法 & 高级数据结构】树状数组:一种高效的数据结构(一)

    🚀 个人主页 :为梦而生~ 关注我一起学习吧! 💡 专栏 :算法题、 基础算法~赶紧来学算法吧 💡 往期推荐 : 【算法基础 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理) 【算法基础】深搜 树状数组 (Binary Indexed Tree,BIT)是一种数据结构,用于高效地处理

    2024年03月11日
    浏览(67)
  • 【算法 & 高级数据结构】树状数组:一种高效的数据结构(二)

    🚀 个人主页 :为梦而生~ 关注我一起学习吧! 💡 专栏 :算法题、 基础算法、数据结构~赶紧来学算法吧 💡 往期推荐 : 【算法基础 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理) 【算法基础】深搜 数据结构各内部排序算法总结对比及动图演示(插入排序

    2024年03月26日
    浏览(84)
  • 数据结构与算法(一): 稀疏数组

    在五子棋游戏或类似的游戏中,我们可以把整个棋盘想象成是一个有规律的二维数组,其值由0、1、2三个数字组成,0代表空白区域,1代表白子,2代表黑子。这种情况:即当一个数组中大部分元素为0或者为同一值时,存储该数组数据可以使用稀疏数组来对原始数组进行精简,

    2024年02月11日
    浏览(46)
  • 数据结构与算法 | 数组(Array)

    数组(Array)应该是最基础的数据结构之一,它由相同类型的元素组成的集合,并按照一定的顺序存储在内存中。每个元素都有一个唯一的索引,可以用于访问该元素。 数组索引(Index): 数组中的每个元素都有一个唯一的整数索引,从0开始计数。索引用于访问数组中的元素

    2024年02月08日
    浏览(50)
  • JavaScript数据结构与算法整理------数组

            数组的标准定义: 一个存储元素的线性集合,元素可以通过索引来任意存取,索引通常是数字,用来计算元素之间存储位置的偏移量 ,几乎所有的编程语言都有类似的数据结构,而JavaScript的数组略有不同。         JavaScript中的数组是一种特殊的对象,用来表示偏

    2023年04月24日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包