【路径规划】鲸鱼算法栅格地图机器人最短路径规划【含Matlab源码 3613期】

这篇具有很好参考价值的文章主要介绍了【路径规划】鲸鱼算法栅格地图机器人最短路径规划【含Matlab源码 3613期】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

启发式优化算法 路径规划,Matlab路径规划(高阶版),matlab

⛄一、鲸鱼算法及栅格地图简介

1 鲸鱼算法
一种元启发式优化算法,模拟座头鲸狩猎行为的元启发式优化算法。目前的工作与其他群优化算法相比的主要区别在于,采用随机或最佳搜索代理来模拟捕猎行为,并使用螺旋来模拟座头鲸的泡泡网攻击机制。该算法具有机制简单、参数少、寻优能力强等优点,在经济调度、最优控制、光伏系统、图像分割等方面得到广泛的应用。

2.1 算法基本原理
座头鲸有特殊的捕猎方法,这种觅食行为被称为泡泡网觅食法;标准 WOA 模拟了座头鲸特有的搜索方法和围捕机制,主要包括:围捕猎物、气泡网捕食、搜索猎物三个重要阶段。WOA 中每个座头鲸的位置代表一个潜在解,通过在解空间中不断更新鲸鱼的位置,最终获得全局最优解。

(1)围捕猎物(Encircling prey)
鲸鱼的搜索范围是全局解空间,需要先确定猎物的位置以便包围。由于最优设计在搜索速度中的位置不是先验已知的,因此WOA算法假定当前的最佳候选解是目标猎物或接近最优解。在定义了最佳搜索代理之后,其他搜索代理将尝试向最佳搜索代理更新它们的位置。

(2)气泡网捕食:
座头鲸捕食主要有两个机制:包围捕食和气泡网捕食。采用气泡网捕食时,座头鲸与猎物间的位置更新用对数螺旋方程表达.

(3)搜索猎物:
为保证所有鲸鱼能在解空间中充分搜索,WOA 根据鲸鱼彼此之间的距离来更新位置,达到随机搜索的目的。因此,当|A| ≥ 1|时,搜索个体会游向随机鲸。

2.2 算法基本流程
标准 WOA 主要依靠系数向量 A 选择搜索猎物的路径,并利用概率 p 决定最终捕食机制。
步骤 1:设置鲸鱼数量 N 和算法的最大迭代次数 tmax,初始化位置信息;
步骤 2:计算每条鲸鱼的适应度,找到当前最优鲸鱼的位置并保留,即 ;
步骤 3:计算参数 a、p 和系数向量 A、C。判断概率 p 是否小于 50%,是则直接转入步骤 4,否则采用气泡网捕食机制:利用式(2-1)进行位置更新;
步骤 4:判断系数向量 A 的绝对值是否小于 1,是则包围猎物:按式(1-2)更新位置;否则全局随机搜索猎物:按式(3-1)更新位置;
步骤 5:位置更新结束,计算每条鲸鱼的适应度,并与先前保留的最优鲸鱼的位置比较,若优于,则利用新的最优解替换;
步骤 6:判断当前计算是否达到最大迭代次数,如果是,则获得最优解,计算结束,否则进入下一次迭代,并返回步骤 3。
WOA算法首先随机初始化一组解,在每次迭代中,搜索代理根据随机选择的搜索代理或到目前为止获得的最优解更新它们的位置。将 a 参数由 2 随迭代次数降为 0,从而由探索逐步到利用。当 |A|>1 时选择随机搜索代理,|A|< 1时选择最优解更新搜索代理位置。根据 p 的值,WOA可以在螺旋运动和圆环运动之间进行切换。最后,通过满足终止准则来终止WOA算法。

2 栅格地图
2.1 栅格法应用背景
路径规划时首先要获取环境信息, 建立环境地图, 合理的环境表示有利于建立规划方法和选择合适的搜索算法,最终实现较少的时间开销而规划出较为满意的路径。一般使用栅格法在静态环境下建立环境地图。
2.2 栅格法实质
将AGV的工作环境进行单元分割, 将其用大小相等的方块表示出来,这样栅格大小的选取是影响规划算法性能的一个很重要的因素。栅格较小的话,由栅格地图所表示的环境信息将会非常清晰,但由于需要存储较多的信息,会增大存储开销,同时干扰信号也会随之增加,规划速度会相应降低,实时性得不到保证;反之,由于信息存储量少,抗干扰能力有所增强,规划速随之增快,但环境信息划分会变得较为模糊,不利于有效路径的规划。在描述环境信息时障碍物所在区域在栅格地图中呈现为黑色,地图矩阵中标为1,可自由通行区域在栅格地图中呈现为白色,地图矩阵中标为0。路径规划的目的就是在建立好的环境地图中找到一条最优的可通行路径,所以使用栅格法建立环境地图时,栅格大小的合理设定非常关键。
2.3 10乘10的静态环境地图
启发式优化算法 路径规划,Matlab路径规划(高阶版),matlab
10乘10的静态环境地图代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境地图%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function DrawMap(map)
n = size(map);
step = 1;
a = 0 : step :n(1);
b = 0 : step :n(2);
figure(1)
axis([0 n(2) 0 n(1)]); %设置地图横纵尺寸
set(gca,'xtick',b,'ytick',a,'GridLineStyle','-',...
'xGrid','on','yGrid','on');
hold on
r = 1;
for(i=1:n(1))         %设置障碍物的左下角点的x,y坐标
    for(j=1:n(2))
        if(map(i,j)==1)
            p(r,1)=j-1;
            p(r,2)=i-1;
            fill([p(r,1) p(r,1) + step p(r,1) + step p(r,1)],...
                 [p(r,2) p(r,2) p(r,2) + step p(r,2) + step ],'k');
            r=r+1;
            hold on
        end
    end
end
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%栅格数字标识%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x_text = 1:1:n(1)*n(2); %产生所需数值.
for i = 1:1:n(1)*n(2)
    [row,col] = ind2sub([n(2),n(1)],i);
    text(row-0.9,col-0.5,num2str(x_text(i)),'FontSize',8,'Color','0.7 0.7 0.7');
end
hold on
axis square

建立环境矩阵,1代表黑色栅格,0代表白色栅格,调用以上程序,即可得到上述环境地图。

map=[0 0 0 1 0 0 1 0 0 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 1 0 0 0 1 1 0 0;
     0 0 0 0 0 0 0 0 0 0;
     0 0 0 0 0 1 0 0 1 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 0 1 0 0 0 0 0 0;
     1 1 1 0 0 0 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;];
     DrawMap(map);         %得到环境地图

2.4 栅格地图中障碍栅格处路径约束
移动体栅格环境中多采用八方向的移动方式,此移动方式在完全可通行区域不存在运行安全问题,当
移动体周围存在障碍栅格时此移动方式可能会发生与障碍物栅格的碰撞问题,为解决此问题加入约束
条件,当在分别与障碍物栅格水平方向和垂直方向的可行栅格两栅格之间通行时,禁止移动体采用对
角式移动方式。
启发式优化算法 路径规划,Matlab路径规划(高阶版),matlab
启发式优化算法 路径规划,Matlab路径规划(高阶版),matlab
约束条件的加入,实质是改变栅格地图的邻接矩阵,将障碍栅格(数字为“1”的矩阵元素)的对角栅格
设为不可达, 即将对角栅格的距离值改为无穷大。其实现MATLAB代码如下:
代码:

%约束移动体在障碍栅格对角运动
%通过优化邻接矩阵实现
%%%%%%%%%%%%%%%%%% 约束移动体移动方式 %%%%%%%%%%%%%%%%%
function W=OPW(map,W)
% map 地图矩阵  % W 邻接矩阵
n = size(map);
num = n(1)*n(2);
for(j=1:n(1))
    for(z=1:n(2))
       if(map(j,z)==1)
          if(j==1)                  %若障碍物在第一行
             if(z==1)               %若障碍物为第一行的第一个
                W(j+1,j+n(2)*j)=Inf;
                W(j+n(2)*j,j+1)=Inf;
             else
                if(z==n(2))         %若障碍物为第一行的最后一个
                   W(n(2)-1,n(2)+n(1)*j)=Inf;
                   W(n(2)+n(1)*j,n(2)-1)=Inf;
                else                %若障碍物为第一行的其他
                    W(z-1,z+j*n(2))=Inf;
                    W(z+j*n(2),z-1)=Inf;
                    W(z+1,z+j*n(2))=Inf;
                    W(z+j*n(2),z+1)=Inf;
                end
             end
          end
          if(j==n(1))               %若障碍物在最后一行
             if(z==1)               %若障碍物为最后一行的第一个
                W(z+n(2)*(j-2),z+n(2)*(j-1)+1)=Inf;
                W(z+n(2)*(j-1)+1,z+n(2)*(j-2))=Inf;
             else
             if(z==n(2))            %若障碍物为最后一行的最后一个
                W(n(1)*n(2)-1,(n(1)-1)*n(2))=Inf;
                W((n(1)-1)*n(2),n(1)*n(2)-1)=Inf;
             else                   %若障碍物为最后一行的其他
                W((j-2)*n(2)+z,(j-1)*n(2)+z-1)=Inf;
                W((j-1)*n(2)+z-1,(j-2)*n(2)+z)=Inf;
                W((j-2)*n(2)+z,(j-1)*n(2)+z+1)=Inf;
                W((j-1)*n(2)+z+1,(j-2)*n(2)+z)=Inf;
             end
             end
          end
          if(z==1)              
             if(j~=1&&j~=n(1))       %若障碍物在第一列非边缘位置 
                W(z+(j-2)*n(2),z+1+(j-1)*n(2))=Inf;
                W(z+1+(j-1)*n(2),z+(j-2)*n(2))=Inf;
                W(z+1+(j-1)*n(2),z+j*n(2))=Inf;
                W(z+j*n(2),z+1+(j-1)*n(2))=Inf;
             end
          end
         if(z==n(2))
            if(j~=1&&j~=n(1))         %若障碍物在最后一列非边缘位置 
               W((j+1)*n(2),j*n(2)-1)=Inf;
               W(j*n(2)-1,(j+1)*n(2))=Inf;
               W(j*n(2)-1,(j-1)*n(2))=Inf;
               W((j-1)*n(2),j*n(2)-1)=Inf;
            end
         end
         if(j~=1&&j~=n(1)&&z~=1&&z~=n(2))   %若障碍物在非边缘位置
            W(z+(j-1)*n(2)-1,z+j*n(2))=Inf;
            W(z+j*n(2),z+(j-1)*n(2)-1)=Inf;
            W(z+j*n(2),z+(j-1)*n(2)+1)=Inf;
            W(z+(j-1)*n(2)+1,z+j*n(2))=Inf;
            W(z+(j-1)*n(2)-1,z+(j-2)*n(2))=Inf;
            W(z+(j-2)*n(2),z+(j-1)*n(2)-1)=Inf;
            W(z+(j-2)*n(2),z+(j-1)*n(2)+1)=Inf;
            W(z+(j-1)*n(2)+1,z+(j-2)*n(2))=Inf;
         end
       end
     end
   end
end

2.5 栅格法案例
下面以Djkstra算法为例, 其实现如下:

map=[0 0 0 1 0 0 1 0 0 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 1 0 0 0 1 1 0 0;
     0 0 0 0 0 0 0 0 0 0;
     0 0 0 0 0 1 0 0 1 0;
     1 0 0 0 0 1 1 0 0 0;
     0 0 0 1 0 0 0 0 0 0;
     1 1 1 0 0 0 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;
     0 0 0 0 0 1 1 0 0 0;];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%建立环境矩阵map%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DrawMap(map); %得到环境地图
W=G2D(map);   %得到环境地图的邻接矩阵
W(W==0)=Inf;  %邻接矩阵数值处理
W=OPW(map,W); %优化邻接矩阵
[distance,path]=dijkstra(W,1,100);%设置起始栅格,得到最短路径距离以及栅格路径
[x,y]=Get_xy(distance,path,map);   %得到栅格相应的x,y坐标
Plot(distance,x,y);   %画出路径


运行结果如下:
启发式优化算法 路径规划,Matlab路径规划(高阶版),matlab
其中函数程序:
DrawMap(map) 详见建立栅格地图
W=G2D(map) ; 详见建立邻接矩阵
[distance, path] =dijkstra(W, 1, 100) 详见Djk stra算法
[x, y] =Get_xy(distance, path, map) ;
Plot(distance, x, y) ;

⛄二、部分源代码

clc
clear
close all
tic
%% 地图
G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0;
0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;];
for i=1:20/2
for j=1:20
m=G(i,j);
n=G(21-i,j);
G(i,j)=n;
G(21-i,j)=m;
end
end
%%
S = [1 1];
E = [20 20];
G0 = G;
G = G0(S(1):E(1),S(2):E(2));
[Xmax,dimensions] = size(G);
dimensions = dimensions - 2;
X_min = 1;
%% 参数设置
max_gen = 200; % 最大迭代次数
num_polution = 50; % 种群数量
fboj=@(x)fitness(x,G,X_min,Xmax);

⛄三、运行结果

启发式优化算法 路径规划,Matlab路径规划(高阶版),matlab
启发式优化算法 路径规划,Matlab路径规划(高阶版),matlab

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]陈云霁,范道生,刘新宇. “基于正弦余弦算法的自主导航机器人路径规划研究.” 自动化学报,2012年,38(8): 1465-1474.
[2]陈云霁,范道生,刘新宇. “基于正弦余弦算法的机器人路径规划实验研究.” 科技通报,2011年,27(11): 68-71.
[3]张银红,杨琳. “基于正弦余弦算法的栅格地图机器人路径规划研究.” 计算机技术与发展,2012年,22(7): 12-15.
[4]刘江波,吴天一. 《栅格地图机器人路径规划算法及其应用》. 清华大学出版社,2016年.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除文章来源地址https://www.toymoban.com/news/detail-763386.html

到了这里,关于【路径规划】鲸鱼算法栅格地图机器人最短路径规划【含Matlab源码 3613期】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【路径规划】基于遗传算法求解机器人栅格地图路径规划问题matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进, 代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信    

    2024年01月24日
    浏览(64)
  • 基于蚁群算法的机器人栅格地图路径规划

    基于蚁群算法的机器人栅格地图路径规划 蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的启发式优化算法。它常被应用于求解路径规划问题,其中包括机器人在栅格地图上寻找最佳路径的情景。在本文中,我们将介绍如何使用蚁群算法来实现机器人在栅格地图

    2024年02月07日
    浏览(46)
  • 【栅格地图路径规划】基于双向蚁群算法的机器人栅格法路径规划附matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信       无

    2024年02月22日
    浏览(66)
  • 基于遗传算法求解机器人栅格地图路径规划问题matlab仿真

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进, 代码获取、论文复现及科研仿真合作可私信。 🍎个人主页:Matlab科研工作室 🍊个人信条:格物致知。 更多Matlab完整代码及仿真定制内容点击👇 智能优化算法       神经网络预测       雷达通信    

    2024年01月22日
    浏览(57)
  • A*算法在MATLAB中的机器人栅格地图路径规划

    A*算法在MATLAB中的机器人栅格地图路径规划 路径规划是机器人领域中的重要问题之一,其中A*(A-star)算法是一种常用且有效的路径搜索算法。本文将介绍如何在MATLAB中使用A*算法进行机器人栅格地图的路径规划,并提供相应的源代码。 首先,我们需要了解A 算法的原理。A 算

    2024年02月06日
    浏览(49)
  • 基于Bresenham直线算法的机器人栅格地图路径规划(附带Matlab代码)

    基于Bresenham直线算法的机器人栅格地图路径规划(附带Matlab代码) 路径规划是机器人导航中的关键任务之一,它涉及寻找从起点到目标点的最优路径。在栅格地图中,机器人通常被表示为一个点,而障碍物被表示为栅格单元。Bresenham直线算法是一种经典的图形算法,可以用于

    2024年02月07日
    浏览(49)
  • A*算法在机器人栅格地图路径规划与避障中的应用

    路径规划是机器人导航和自主移动中的重要任务之一。A*(A-star)算法是一种常用的搜索算法,被广泛应用于机器人路径规划和避障问题中。本文将介绍如何使用A*算法求解机器人在栅格地图上的路径规划,并提供相应的Matlab代码。 栅格地图表示 栅格地图是将环境划分为网格

    2024年02月06日
    浏览(47)
  • 【路径规划】自适应遗传算法机器人栅格地图最短路径规划【含Matlab源码 3570期】

    1 遗传算法 遗传算法是一种基于生物进化论模型的优化算法,通过模拟生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。遗传算法可以用于解决各种优化问题,如函数优化、组合优化、机器学习等

    2024年02月03日
    浏览(72)
  • 【路径规划】萤火虫算法栅格地图机器人最短路径规划【含Matlab源码 3662期】

    ✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。 🍎个人主页:海神之光 🏆代码获取方式: 海神之光Matlab王者学习之路—代码获取方式 ⛳️座右铭:行百里者,半于九十。 更多Matlab仿真内容点击👇 Matlab图像处理(进阶版) 路径规划

    2024年02月20日
    浏览(98)
  • 基于Matlab的A*算法实现机器人在栅格地图上的三维路径规划

    基于Matlab的A*算法实现机器人在栅格地图上的三维路径规划 一、引言 路径规划是机器人领域中的一个重要问题,尤其是在三维环境中。A*(A-star)算法是一种常用且高效的路径规划算法,可以帮助机器人在给定的栅格地图上找到最短路径。本文将介绍如何使用Matlab来实现A*算

    2024年02月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包