Flink 中KeyBy、分区、分组的正确理解

这篇具有很好参考价值的文章主要介绍了Flink 中KeyBy、分区、分组的正确理解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.Flink中的KeyBy

在Flink中,KeyBy作为我们常用的一个聚合类型算子,它可以按照相同的Key对数据进行重新分区,分区之后分配到对应的子任务当中去。
源码解析
keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为 KeyedStream(键控流),KeyedStream 可以认为是“分区流”或者“键控流”,它是对 DataStream 按照 key 的一个逻辑分区。
所以泛型有两个类型:除去当前流中的元素类型外,还需要指定 key 的类型。
flink keyby,# Flink,flink,大数据
KeyBy是如何实现分区的呢

Flink中的KeyBy底层其实就是通过Hash实现的,通过对Key的值进行Hash,再做一次murmurHash,取模运算。
再通过Job的并行度,就能获取每个Key应该分配到那个子任务中了。

flink keyby,# Flink,flink,大数据

2.分组和分区在Flink中的区别

分区:分区(Partitioning)是将数据流划分为多个子集,这些子集可以在不同的任务实例上进行处理,以实现数据的并行处理。
数据具体去往哪个分区,是通过指定的 key 值先进行一次 hash 再进行一次 murmurHash,通过上述计算得到的值再与并行度进行相应的计算得到。
分组:分组(Grouping)是将具有相同键值的数据元素归类到一起,以便进行后续操作(如聚合、窗口计算等)。
key值相同的数据将进入同一个分组中。
注意:数据如果具有相同的key将一定去往同一个分组和分区,但是同一分区中的数据不一定属于同一组。文章来源地址https://www.toymoban.com/news/detail-763589.html

3.代码示例

package com.flink.DataStream.Aggregation;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class FlinkKeyByDemo {
    public static void main(String[] args) throws Exception {
        //TODO 创建Flink上下文执行环境
        StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
        //设置并行度为1
        streamExecutionEnvironment.setParallelism(1);
        //设置执行模式为批处理
        streamExecutionEnvironment.setRuntimeMode(RuntimeExecutionMode.BATCH);
        //TODO source 从集合中创建数据源
        DataStreamSource<String> dataStreamSource = streamExecutionEnvironment.fromElements("hello word", "hello flink");
        //TODO 方式一 匿名实现类
        SingleOutputStreamOperator<Tuple2<String, Integer>> outputStreamOperator1 = dataStreamSource
                .flatMap(new FlatMapFunction<String, String>() {
                    @Override
                    public void flatMap(String s, Collector<String> collector) throws Exception {
                        String[] s1 = s.split(" ");
                        for (String word : s1) {
                            collector.collect(word);
                        }
                    }
                })
                .map(new MapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public Tuple2<String, Integer> map(String s) throws Exception {
                        Tuple2<String, Integer> aa = Tuple2.of(s, 1);
                        return aa;
                    }
                })
                /**
                 * keyBy 得到的结果将不再是 DataStream,而是会将 DataStream 转换为 KeyedStream(键控流)
                 * KeyedStream 可以认为是“分区流”或者“键控流”,它是对 DataStream 按照 key 的一个逻辑分区
                 * 所以泛型有两个类型:除去当前流中的元素类型外,还需要指定 key 的类型。
                 * */

                /**
                 * 分组和分区在Flink 中具有不同的含义和作用:
                 * 分区:分区(Partitioning)是将数据流划分为多个子集,这些子集可以在不同的任务实例上进行处理,以实现数据的并行处理。
                 *      数据具体去往哪个分区,是通过指定的 key 值先进行一次 hash 再进行一次 murmurHash,通过上述计算得到的值再与并行度进行相应的计算得到。
                 * 分组:分组(Grouping)是将具有相同键值的数据元素归类到一起,以便进行后续操作 (如聚合、窗口计算等)。
                 *      key 值相同的数据将进入同一个分组中。
                 * 注意:数据如果具有相同的key将一定去往同一个分组和分区,但是同一分区中的数据不一定属于同一组。
                 * */

                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
                        return stringIntegerTuple2.f0;
                    }
                })
                .sum(1);
        //TODO 方式二 Lamda表达式实现
        SingleOutputStreamOperator<Tuple2<String, Integer>> outputStreamOperator2 = dataStreamSource
                .flatMap((String s, Collector<String> collector) -> {
                    String[] s1 = s.split(" ");
                    for (String word : s1) {
                        collector.collect(word);
                    }
                })
                .returns(Types.STRING)
                .map((String word) -> {
                    return Tuple2.of(word, 1);
                })
                //Java中lamda表达式存在类型擦除
                .returns(Types.TUPLE(Types.STRING, Types.INT))
                .keyBy((Tuple2<String, Integer> s) -> {
                    return s.f0;
                })
                .sum(1);
        //TODO sink
        outputStreamOperator1.print("方式一");
        outputStreamOperator2.print("方式二");
        //TODO 执行
        streamExecutionEnvironment.execute("Flink KeyBy Demo");
    }
}

到了这里,关于Flink 中KeyBy、分区、分组的正确理解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【flink番外篇】2、flink的23种算子window join 和interval join 数据倾斜、分区介绍及详细示例(1)- window join

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月03日
    浏览(57)
  • 【Flink】Flink 的八种分区策略(源码解读)

    Flink 包含 8 种分区策略,这 8 种分区策略(分区器)分别如下面所示,本文将从源码的角度解读每个分区器的实现方式。 GlobalPartitioner ShufflePartitioner RebalancePartitioner RescalePartitioner BroadcastPartitioner ForwardPartitioner KeyGroupStreamPartitioner CustomPartitionerWrapper 该分区器会将所有的数据都

    2024年04月10日
    浏览(34)
  • # 正确删除并理解ClickHouse表和分区

    ClickHouse表有一组数据块组成,称为分区和部分,分区是逻辑概念,对应磁盘上的目录,部分对应磁盘上的实际文件。 我们可以从表中分离(detach) 分区(partition)或部分(parts),并没有实际删除数据,意味着数据从表中删除,并没有从磁盘上删除,我们可以在未来某个时刻重新附

    2024年02月10日
    浏览(33)
  • flink重温笔记(五):Flink 流批一体 API 开发——物理分区(下)

    前言 :今天是学习 flink 的第五天啦! 主要学习了物理分区较难理解的部分,在这个部分的三个分区的学习中, rescale partition 和 forward partition 其原理可以归类 pointwise 模式,其他的 partition 其原理可以归类 all_to_all 模式,而比较有趣的是 custom partitioning,这个可以进行根据值

    2024年02月19日
    浏览(43)
  • flink重温笔记(四):Flink 流批一体 API 开发——物理分区(上)

    前言:今天是学习flink的第四天啦!学习了物理分区的知识点,这一次学习了前4个简单的物理分区,称之为简单分区篇! Tips:我相信自己会越来会好的,明天攻克困难分区篇,加油! 3. 物理分区 3.1 Global Partitioner 该分区器会将所有的数据都发送到下游的某个算子实例(subta

    2024年02月19日
    浏览(38)
  • Flink系列之:动态发现新增分区

    为了在不重新启动 Flink 作业的情况下处理主题扩展或主题创建等场景,可以将 Kafka 源配置为在提供的主题分区订阅模式下定期发现新分区。要启用分区发现,请为属性partition.discovery.interval.ms设置一个非负值。 flink程序增加自动发现分区参数: flink.partition-discovery.interval-mil

    2024年02月13日
    浏览(38)
  • Flink状态编程之按键分区状态

    在实际应用中,我们一般都需要将数据按照某个 key 进行分区,然后再进行计算处理;所 以最为常见的状态类型就是 Keyed State。之前介绍到 keyBy 之后的聚合、窗口计算,算子所 持有的状态,都是 Keyed State。 另外,我们还可以通过富函数类(Rich Function)对转换算子进行扩展、

    2024年01月25日
    浏览(39)
  • Flink处理函数(2)—— 按键分区处理函数

     按键分区处理函数(KeyedProcessFunction):先进行分区,然后定义处理操作 定时器(timers)是处理函数中进行时间相关操作的主要机制 定时服务(TimerService)提供了注册定时器的功能 TimerService 是 Flink 关于时间和定时器的基础服务接口: 六个方法可以分成两大类:基于处理时

    2024年01月21日
    浏览(43)
  • Flink学习6-自定义分区器介绍

    背景说明 我们都知道自定义source是可以自定义并行度的,数据读写有几个并行度就意味着有几个分区。那么怎么控制我想要的数据流入到指定分区呢?flink1.12官方文档给我们提供了一下几种方式,接下来我们分别进行讨论。 partitionCustom分区器 按照官方的原话翻译过来就是使

    2023年04月14日
    浏览(33)
  • Flink KafkaSink分区配置的不同版本对比

    Flink KafkaSink分区配置的不同版本对比 在不同版本的Flink中,KafkaSink 分区默认配置方式可能会有一些变化。以下是摘自Flink官方文档不同版本的原文: 1. Flink版本:1.12~1.19 Sink 分区 # 配置项 sink.partitioner 指定了从 Flink 分区到 Kafka 分区的映射关系。 默认情况下,Flink 使用 Kafka

    2024年04月24日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包