c# OpenCvSharp图像裁剪、调整大小、旋转、透视(三)

这篇具有很好参考价值的文章主要介绍了c# OpenCvSharp图像裁剪、调整大小、旋转、透视(三)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

图像裁剪、调整大小、旋转、透视图像处理基本操作。

  1. croppedImage 图像裁剪
  2. Cv2.Resize() 调整图像大小
  3. 图像旋转
  • Cv2.Rotate()旋转
  • Cv2.Flip()翻转
  • Cv2.WarpAffine()任意角度旋转
  • Cv2.GetAffineTransform()透视

一、图像裁剪

Rect rect = new Rect(x, y, width, height); // x, y 为起始坐标,width, height 为裁剪宽高

参数 说明
pt1 起始坐标x
pt2 起始坐标y
width 终点坐标
height 直线的颜色
// 读取原始图像
Mat image = new Mat("1.png", ImreadModes.Color);
// 设置感兴趣区域的坐标和尺寸
Rect roi = new Rect(100, 100, 200, 200);//坐标 x,y 尺寸 长宽
// 裁剪图像
Mat croppedImage = new Mat(image, roi);
// 显示图片
Cv2.ImShow("image", image);
Cv2.ImShow("croppedImage", croppedImage);

二、调整图像大小

Cv2.Resize(src,OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR );

参数 说明
src 输入,原图像,即待改变大小的图像
dst 输出,改变大小之后的图像,这个图像和原图像具有相同的内容,只是大小和原图像不一样而已
dsize
  • 输出图像的大小。如果这个参数不为0,那么就代表将原图像缩放到这个Size(width,height)指定的大小;如果这个参数为0,那么原图像缩放之后的大小就要通过下面的公式来计算:
  •        dsize = Size(round(fx*src.cols), round(fy*src.rows))
  •        其中,fx和fy就是下面要说的两个参数,是图像width方向和height方向的缩放比例。
  • fx:width方向的缩放比例,如果它是0,那么它就会按照(double)dsize.width/src.cols来计算;
  • fy:height方向的缩放比例,如果它是0,那么它就会按照(double)dsize.height/src.rows来计算;
interpolation

这个是指定插值的方式,图像缩放之后,肯定像素要进行重新计算的,就靠这个参数来指定重新计算像素的方式,有以下几种

  • INTER_NEAREST - 最邻近插值
  •  INTER_LINEAR - 双线性插值,如果最后一个参数你不指定,默认使用这种方法
  • INTER_AREA -区域插值 resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire’-free results. But when the image is zoomed, it is similar to the INTER_NEAREST method.
  • INTER_CUBIC - 4x4像素邻域内的双立方插值
  • INTER_LANCZOS4 - 8x8像素邻域内的Lanczos插值

 Mat srcImage = new Mat("1.png", ImreadModes.Color);
  // 临时变量和目标图的定义
 Mat dstImage1 = new Mat();
 Mat dstImage2 = new Mat();
 Mat dstImage3= new Mat();
 Mat dstImage4 = new Mat();
 //进行尺寸调整操作
 Cv2.Resize(srcImage, dstImage1, new OpenCvSharp.Size(srcImage.Cols / 2, srcImage.Rows / 2), (double)InterpolationFlags.Linear);
 Cv2.Resize(srcImage, dstImage2, new OpenCvSharp.Size(srcImage.Cols / 2, srcImage.Cols / 2), (double)InterpolationFlags.Area);
 Cv2.Resize(srcImage, dstImage3, new OpenCvSharp.Size(srcImage.Cols * 2, srcImage.Cols * 2), (double)InterpolationFlags.Cubic);
 Cv2.Resize(srcImage, dstImage4, new OpenCvSharp.Size(srcImage.Cols * 2, srcImage.Cols * 2), (double)InterpolationFlags.Linear);
 Cv2.ImShow("dstImage1", dstImage1);
 Cv2.ImShow("dstImage2", dstImage2);
 Cv2.ImShow("dstImage3", dstImage3);
 Cv2.ImShow("dstImage4", dstImage4);
OpenCV图像缩放resize各种插值方式的比较

三、图片旋转

  1. 左旋转90° Cv2.Rotate(src, dst, RotateFlags.Rotate90CounterClockwise);
  2. 右旋转90° Cv2.Rotate(src, dst, RotateFlags.Rotate90Clockwise);
  3. 旋转180° Cv2.Rotate(src, dst, RotateFlags.Rotate180);
  4. 垂直翻转 Cv2.Flip(src, dst, FlipMode.Y);
  5. 水平翻转Cv2.Flip(src, dst, FlipMode.X);
using OpenCvSharp;
using System;

class Program
{
    static void Main()
    {
        Mat src = new Mat("input.jpg", ImreadModes.Color);
        Mat dst = new Mat();
        Cv2.Rotate(src, dst, RotateFlags.Rotate90Clockwise);
        Cv2.ImShow("dst", dst);
        Cv2.WaitKey(0);
    }
}

6.任意角度旋转

Cv2.WarpAffine(
         InputArray      src, // 输入图像
         OutputArray dst, // 输出图像
         InputArray      M, // 旋转矩阵
         Size         dsize, // 输出图像大小
         int   flags = INTER_LINEAR, // 像素插值方式
         int   borderMode = BORDER_CONSTANT, // 背景填充默认为常量
         const Scalar &        borderValue = Scalar() // 填充颜色默认为黑色
)

说明
src 输入图像
dst 输出图像
M 旋转矩阵
dsize 输出图像大小
flags 像素插值方式
borderMode 背景填充默认为常量
const Scalar 填充颜色默认为黑色
using OpenCvSharp;

Mat img = new Mat("1.png", ImreadModes.Grayscale);
Point2f center = new Point2f(img.Cols / 2f, img.Rows / 2f);
//使用了Cv2.GetRotationMatrix2D()函数构建旋转矩阵,然后使用Cv2.WarpAffine()函数进行仿射变换。
Mat matrix = Cv2.GetRotationMatrix2D(center, 45, 0.6);
Cv2.WarpAffine(img, img, matrix, img.Size());
Cv2.ImShow("img", img);
Cv2.WaitKey(0);
Cv2.DestroyAllWindows();

7.图像透视

Cv2.GetAffineTransform(srcPoints, dstPoints);

参数

src: 代表输入图像的三个点坐标, 形为:[[col_1, row_1], [col_2, row_2], [col_3, row_3]]
dst: 代表输出图像的三个点坐标, 形为:[[col_4, row_4], [col_5, row_5], [col_6, row_6]]
点1 由位置 [col_1, row_1] 移动到 [col_4, row_4]
点2 由位置 [col_2, row_2] 移动到 [col_5, row_5]
点3 由位置 [col_3, row_3] 移动到 [col_6, row_6]

using OpenCvSharp;

Mat src = new Mat("input.jpg", ImreadModes.Color);
Mat dst = new Mat();

Point2f[] srcPoints = new Point2f[]
{
    new Point2f(0, 0),
    new Point2f(src.Cols, 0),
    new Point2f(0, src.Rows)
};

Point2f[] dstPoints = new Point2f[]
{
    new Point2f(src.Cols * 0.0f, src.Rows * 0.33f),
    new Point2f(src.Cols * 0.85f, src.Rows * 0.25f),
    new Point2f(src.Cols * 0.15f, src.Rows * 0.7f)
};

Mat affineMatrix = Cv2.GetAffineTransform(srcPoints, dstPoints);
Cv2.WarpAffine(src, dst, affineMatrix, src.Size());

Cv2.ImShow("src", src);
Cv2.ImShow("dst", dst);
Cv2.WaitKey();

 c# OpenCV文章目录

c# OpenCV 检测(斑点检测、边缘检测、轮廓检测)(五)

c# OpenCV 基本绘画(直线、椭圆、矩形、圆、多边形、文本)(四)
c# OpenCV 图像裁剪、调整大小、旋转、透视(三)

c#OpenCV 读取、显示和写入图像(二)

c# OpenCV安装(一)文章来源地址https://www.toymoban.com/news/detail-764306.html

到了这里,关于c# OpenCvSharp图像裁剪、调整大小、旋转、透视(三)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++ OpenCV 使用 resize() 调整图像大小

    调整图像大小意味着改变它的尺寸,无论是宽度、高度还是两者都改变​​。此外,原始图像的纵横比可以保留在调整大小的图像中。为了调整图像大小,OpenCV 提供了 resize() 函数。 resize() 函数 参数 src - 输入图像。 dst - 输出图像;它的大小为 dsize(当它非零时)或从 src.s

    2024年02月04日
    浏览(50)
  • 如何使用Python中的OpenCV对图像进行调整大小?

    OpenCV  提供了函数  cv2.resize()  用于调整图像大小。OpenCV中的调整大小被称为  缩放  。我们可以通过指定图像大小或缩放因子来调整图像大小。当我们指定缩放因子时,宽高比会得到保留。 cv2.resize()  函数中有不同的插值方法: cv2.INTER_AREA  —— 用于缩小图像。 cv2.INTER

    2024年02月04日
    浏览(54)
  • C#使用OpenCv(OpenCVSharp)图像全局二值化处理实例

    本文实例演示C#语言中如何使用OpenCv(OpenCVSharp)对图像进行全局二值化处理。 目录 图像二值化原理 函数原型 参数说明 实例 效果

    2024年02月13日
    浏览(50)
  • C#使用OpenCv(OpenCVSharp)图像局部二值化处理实例

      本文实例演示C#语言中如何使用OpenCv(OpenCVSharp)对图像进行局部二值化处理。 目录 图像二值化原理 局部二值化 自适应阈值 实例 效果

    2024年02月13日
    浏览(55)
  • C#使用OpenCv(OpenCVSharp)图像直方图均衡化处理实例

    本文实例演示C#语言中如何使用OpenCv(OpenCVSharp)对图像进行直方图均衡化处理。 直方图均衡化原理 直方图均衡化(Histogram Equalization)是一种常用的图像增强技术,用于改善图像的对比度和亮度分布。它通过重新分配图像灰度级的像素值,使得图像的直方图在灰度范围内更加

    2024年02月07日
    浏览(97)
  • C#使用OpenCv(OpenCVSharp)图像处理实例:亮度、对比度、灰度

    本文实例演示C#语言中如何使用OpenCv(OpenCVSharp)对图像进行亮度、对比度、灰度处理。 目录 亮度和对比度原理 灰度 实例 图像亮度通俗理解便是图像的明暗程度,数字图像 f(x,y) = i(x,y) r(x, y) ,如果灰度值在[0,255]之间,则 f 值越接近0亮度越低,f 值越接近255亮度越

    2024年02月13日
    浏览(76)
  • opencv中调整图像显示框大小,cv2.namedWindow()

    如果要要调整cv2.imshow显示出来的窗口大小, 需要使用 cv2.namedWindow(‘窗口标题’, 默认参数) 参数 cv2.imshow(‘窗口标题’,image),如果前面没有cv2.namedWindow,就自动先执行一个cv2.namedWindow() 窗口默认cv2.WINDOW_AUTOSIZE namedWindow函数的作用是通过指定的名字,创建一个可以作为图像和

    2024年02月16日
    浏览(52)
  • Matlab图像的平移,旋转,缩放,裁剪

    %%------------------------Matlab图像的平移,旋转,缩放,裁剪------------------------------- %-------------------头文件----------------------------- clc ; %清屏幕 clear ; %删除所有的变量 close all ; %将所有打开的图片关掉 %--------------------图像平移 imtranslate-------------------------- A = imread(\\\'1.jpg\\\') ; subplot(

    2024年02月04日
    浏览(45)
  • 【Opencv】PIL Opencv 向图片写入文字并旋转文字,Opencv图片旋转不截断,Opencv图片旋转不裁剪

    刚性变换: 只有物体的位置(平移变换)和朝向(旋转变换)发生改变,而形状不变,得到的变换称为刚性变换。刚性变换是最一般的变换。 使用透视变换,文字会扭曲失真。刚性变换就不会。 一些介绍: https://blog.csdn.net/liuweiyuxiang/article/details/86510191 创建一张空图写文字: 旋转

    2024年02月11日
    浏览(53)
  • 使用OpenCV对旋转矩形区域的内容进行裁剪

    再做OCR的时候,我想单独把矩形的区域裁剪出来,因此对这个问题进行了一些探索,最后得到的具体步骤如下: 使用cv2.minAreaRect()函数获取旋转矩形的中心点、宽度、高度和旋转角度信息。 使用cv2.getRotationMatrix2D()函数获取旋转矩阵。 使用cv2.warpAffine()函数根据旋转矩阵进行旋

    2024年02月15日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包